
POST GRADUATE DEGREE PROGRAMME (CBCS) IN

MATHEMATICS

SEMESTER IV

SELF LEARNING MATERIAL

PAPER : DSE 4.2
(Pure and Applied Streams)
Advanced Operations Research II

Directorate of Open and Distance Learning
University of Kalyani

Kalyani, Nadia
West Bengal, India

Content Writers

Dr. Sahidul Islam
Advanced Operations Research II Associate Professor

Department of Mathematics
University of Kalyani

April, 2024

Directorate of Open and Distance Learning, University of Kalyani

Published by the Directorate of Open and Distance Learning

University of Kalyani, 741235, West Bengal

All rights reserved. No part of this work should be reproduced in any form without the permission in writing
from the Directorate of Open and Distance Learning, University of Kalyani.

Director’s Message
Satisfying the varied needs of distance learners, overcoming the obstacle of Distance and reaching the un-
reached students are the three fold functions catered by Open and Distance Learning (ODL) systems. The
onus lies on writers, editors, production professionals and other personnel involved in the process to overcome
the challenges inherent to curriculum design and production of relevant Self Learning Materials (SLMs). At
the University of Kalyani a dedicated team under the able guidance of the Hon’ble Vice-Chancellorhas in-
vested its best efforts, professionally and in keeping with the demands of Post Graduate CBCS Programmes
in Distance Mode to devise a self-sufficient curriculum for each course offered by the Directorate of Open and
Distance Learning (DODL), University of Kalyani.

Development of printed SLMs for students admitted to the DODL within a limited time to cater to the
academic requirements of the Course as per standards set by Distance Education Bureau of the University
Grants Commission, New Delhi, India under Open and Distance Mode UGC Regulations, 2020 had been our
endeavor. We are happy to have achieved our goal.

Utmost care and precision have been ensured in the development of the SLMs, making them useful to the
learners, besides avoiding errors as far as practicable. Further suggestions from the stakeholders in this would
be welcome.

During the production-process of the SLMs, the team continuously received positive stimulations and feed-
back from Professor (Dr.) Amalendu Bhunia, Hon’ble Vice-Chancellor, University of Kalyani, who kindly
accorded directions, encouragements and suggestions, offered constructive criticism to develop it with in
proper requirements. We gracefully, acknowledge his inspiration and guidance.

Sincere gratitude is due to the respective chairpersons as well as each and every member of PGBOS
(DODL), University of Kalyani. Heartfelt thanks are also due to the Course Writers-faculty members at
the DODL, subject-experts serving at University Post Graduate departments and also to the authors and aca-
demicians whose academic contributions have enriched the SLMs. We humbly acknowledge their valuable
academic contributions. I would especially like to convey gratitude to all other University dignitaries and
personnel involved either at the conceptual or operational level of the DODL of University of Kalyani.

Their persistent and coordinated efforts have resulted in the compilation of comprehensive, learner-friendly,
flexible texts that meet the curriculum requirements of the Post Graduate Programme through Distance Mode.

Self Learning Materials (SLMs) have been published by the Directorate of Open and Distance Learning,
University of Kalyani, Kalyani-741235, West Bengal and all the copyrights reserved for University of Kalyani.
No part of this work should be reproduced in any from without permission in writing from the appropriate
authority of the University of Kalyani.

All the Self Learning Materials are self written and collected from e-book, journals and websites.

Director

Directorate of Open and Distance Learning

University of Kalyani

Post Graduate Board of Studies
Department of Mathematics

Directorate of Open and Distance Learning
University of Kalyani

Sl No. Name & Designation Role

1 Dr. Samares Pal, Professor & Head Chairperson
Department of Mathematics, University of Kalyani

2 Dr. Pulak Sahoo, Professor Member
Department of Mathematics, University of Kalyani

3 Dr. Sahidul Islam, Associate Professor Member
Department of Mathematics, University of Kalyani

4 Dr. Sushanta Kumar Mohanta, Professor External
Department of Mathematics, Nominated
West Bengal State University Member

5 Ms. Audrija Choudhury, Assistant Professor Member
Department of Mathematics
Directorate of Open and Distance Learning
University of Kalyani

6 Director Convener
Directorate of Open and Distance Learning
University of Kalyani

Discipline Specific Elective Paper

DSE 4.2
Marks : 100 (SEE : 80; IA : 20)

Advanced Operations Research II
(Applied and Pure Streams)

Syllabus

• Unit 1: Reliability: Elements of Reliability theory, failure rate, extreme value distribution.

• Unit 2: Analysis of stochastically falling equipments including the reliability function, reliability and
growth model.

• Unit 3: Information Theory: Information concept, expected information.

• Unit 4: Entropy and properties of entropy function.

• Unit 5: Bivariate Information theory,

• Unit 6: Economic relations involving conditional probabilities,

• Unit 7: Coding theory: Communication system, encoding and decoding.

• Unit 8: Shannon-Fano encoding procedure.

• Unit 9: Haffman encoding, noiseless coding theory, noisy coding.

• Unit 10: Family of codes, Hamming code.

• Unit 11: Golay code, BCH codes, Reed-Muller code, Perfect code, codes and design.

• Unit 12: Linear codes and their dual, weight distribution.

• Unit 13: Markovian Decision Process: Ergodic matrices, regular matrices.

• Unit 14: Imbedded Markov Chain method for Steady State solution.

• Unit 15: Posynomial, Signomial, Degree of difficulty, Unconstrained minimization problems, Solution
using Differential Calculus, Solution seeking Arithmetic-Geometric inequality, Primal dual relationship
& sufficiency conditions in the unconstrained case,

• Unit 16: Constrained minimization, Solution of a constrained Geometric Programming problem, Geo-
metric programming with mixed inequality constrains, Complementary Geometric programming.

• Unit 17: A brief introduction to Inventory Control, Single-item deterministic models without shortages.

• Unit 18: Single-item deterministic models with shortages Dynamic Demand Inventory Models.

• Unit 19: Multi-item inventory models with the limitations on warehouse capacity

• Unit 20: Models with price breaks, single-item stochastic models without Set-up cost and with Set-up
cost, Average inventory capacity, Capital investment.

Contents

Director’s Message

1 1
1.1 Introduction . 1
1.2 Reliability . 1
1.3 MTTF in terms of failure density . 6

2 9
2.1 Linearly Increasing Hazard . 9
2.2 System Reliability . 10
2.3 Redundancy . 14

3 16
3.1 Introduction . 16
3.2 Fundamental theorem of information theory . 17

3.2.1 Origination . 17
3.3 Measure of information and characterisation . 17

3.3.1 Units of information . 20

4 21
4.1 Entropy (Shannon’s Definition) . 21

4.1.1 Units of entropy . 21
4.1.2 Properties of entropy function . 22

5 25
5.1 Joint, conditional and relative entropies . 25
5.2 Mutual information . 26

5.2.1 Conditional mutual information . 29

6 33
6.1 Conditional relative entropy . 33

6.1.1 Convex and Concave functions . 33
6.1.2 Jensen’s Inequality . 33

6.2 Channel Capacity . 38
6.3 Redundancy . 38

CONTENTS

7 43
7.1 Introduction . 43

7.1.1 Expected or average length of a code . 44
7.1.2 Uniquely decodable (separable) code . 45

8 52
8.1 Shannon-Fano Encoding Procedure for Binary code: . 52

9 57
9.1 Construction of Haffman binary code . 57
9.2 Construction of Haffman D ary code (D>2) . 59

10 64
10.1 Error correcting codes . 64
10.2 Construction of linear codes . 66
10.3 Standard form of parity check matrix: . 68
10.4 Hamming Code: . 68
10.5 Cyclic Code . 69

11 71
11.1 Golay Code . 71

11.1.1 The Golay Code . 72
11.2 BCH Code . 74

11.2.1 Introduction . 74
11.2.2 The BCH Code . 75
11.2.3 The Generator Polynomial . 75
11.2.4 The Error Locator Polynomial and the Elementary Symmetric Functions 76
11.2.5 Example: 3 Error Correcting BCH Code . 76

12 78
12.1 Reed-Muller Codes . 78

12.1.1 Introduction to Reed-Muller Codes . 78
12.1.2 First-Order RM Codes . 78
12.1.3 Encoding . 79
12.1.4 Decoding . 81

13 83
13.1 Introduction . 83
13.2 Powers of Stochastic Matrices . 84

14 86
14.1 Ergodic Matrix . 86

15 98
15.1 Geometric Programming . 98

15.1.1 General form of G.P (Unconstrained G.P) (Primal Problem) 99
15.1.2 Necessary conditions for optimality . 99

16 108
16.1 Constraint Geometric Programming Problem . 108

CONTENTS

17 112
17.1 Inventory Control/Problem/Model . 112

17.1.1 Production Management . 112
17.1.2 Inventory Decisions . 113
17.1.3 Inventory related cost: . 113
17.1.4 Why inventory is maintained? . 113
17.1.5 Variables in Inventory Problems . 113
17.1.6 Some Notations . 114

17.2 The Economic Order Quantity (EOQ) model without shortage 114
17.2.1 Model I(a): Economic lot size model with uniform demand 114
17.2.2 Model I(b): Economic lot size with different rates of demand in different cycles 115
17.2.3 Model I(c): Economic lot size with finite rate of Replenishment (finite production)

[EPQ model] . 118

18 121
18.1 Model II(a) : EOQ model with constant rate of demand scheduling time constant 121
18.2 Model II(b) : EOQ model with constant rate of demand scheduling time variable 123
18.3 Model II(c) : EPQ model with shortages . 125

19 131
19.1 Model III: Multi-item inventory model . 131

19.1.1 Model III(a): Limitation on Investment . 132
19.1.2 Model III(b): Limitation on inventory . 134
19.1.3 Model III(c): Limitation on floor space . 136

20 138
20.1 Model IV: Deterministic inventory model with price breaks of quantity discount 138

20.1.1 Model IV(a): Purchase inventory model with one price break 140
20.1.2 Model IV(b): Purchase inventory model with two price breaks 141

20.2 Probabilistic Inventory Model . 142
20.2.1 Instantaneous demand, no set up cost . 142

References 149

Unit 1

Course Structure

• Reliability: Elements of Reliability theory, failure rate, extreme value distribution

1.1 Introduction

Reliability is the probability of a device performing its purpose adequately for the period of time intended
under the operating conditions encountered. The definition brings into focus, four important factors, namely,

• the reliability of a device is expressed as a probability;

• the device is required to give adequate performance;

• the duration of adequate performance is specified;

• the environment or operating conditions are prescribed.

Some of the important aspects of reliability are:

a) Reliability is a function of time. We could not expect an almost wornout light bulb to be as reliable as
one recently put into service.

b) Reliability is a function of conditions to use. In very severe environments, we expect to encounter
frequent system breakdowns than in normal environments.

c) Reliability is expected as a probability which helps us to quantify it and think of optimizing system
reliability.

1.2 Reliability

Definition 1.2.1. Hazard Rate/Failure Rate: Failure rate is the ratio of the number of failures during a
particular unit interval to the average population during that interval. Thus the failure rate for the ith interval
is

ni

1
2

[(
N −

∑i−1
k=1 nk

)
+
(
N −

∑i
k=1 nk

)] ,
where ni is the number of failures during the ith interval and N is the total number of components.

1

2 UNIT 1.

Definition 1.2.2. Failure Density:The failure density in a particular unit interval is the ratio of the number of
failures during that interval to the number of components. So the failure density during the ith interval is

ni

N
= fdi .

Let l be the last interval after which there are no intervals. Then

fdl =
nl

N
.

Thus,

fd1 + fd2 + · · ·+ fdl =
1

N
(n1 + n2 + · · ·+ nl) =

N

N
= 1.

Hence the sum of values entered in column 5 is 1 (Table 1.1).

Definition 1.2.3. Reliability: Reliability(R), is the ratio of the number of survivals at any given time to the
total initial population. That is, reliability at ith time is

R(i) =
si
N

,

si is the number of survivals during the ith interval.

Definition 1.2.4. Probability of failure: The concept of probability of failure is similar to that of the concept
of probability of survival. This is the ratio of the number of units failed within a certain time to the total
population.

Hence, the probability of failure within ith time is

n1 + n2 + · · ·+ ni

N
or

Fi

N
,

so that the probability of failure at ith time plus reliability at ith time is

Fi

N
+

si
N

= 1

(since Fi + si = N), that is, probability of failure and reliability at the same time is always 1.

Definition 1.2.5. Mean Failure Rate(h): If Z1 is the failure rate for the first unit of time, Z2 is the failure
rate for the second unit of time, . . ., ZT is the failure rate for the T th unit of time, then the mean failure rate
for T times will be

h(T) =
Z1 + Z2 + · · ·+ ZT

T
.

The mean failure rate is also obtained from the formula

1

T

[
N(0)−N(T)

N(0)

]
,

where N(0) is the total population at t = 0 and N(T) is the total population remaining at time t = T .

Definition 1.2.6. Mean time to failure (MTTF): In general, if t1 is the time to failure for the first specimen,
t2 is the time to failure for the second specimen, . . ., tN is the time to failure for the N th specimen, then the
MTTF for N specimens is

t1 + t2 + · · ·+ tN
N

.

1.2. RELIABILITY 3

Time(t) Number of Cumulative Number of Failure Failure/ Reliability
failures(n) failures(F) Survivals(S) density(fd) Hazard rate(Z)

0 0 0 1000 0 0 1

1 130 130 870 130
1000 = 0.130 130

1000+870
2

= 0.139 1− 0.130 = 0.870

2 83 213 787 0.083 83
870+787

2

= 0.100 1− (0.130 + 0.083)

= 0.787

3 75 288 712 0.075 75
787+712

2

= 0.100 0.712

4 68 356 644 0.068 68
712+644

2

= 0.100 0.644

5 62 418 582 0.062 62
644+582

2

= 0.101 0.582

6 56 474 526 0.056 56
582+526

2

= 0.101 0.526

7 51 525 475 0.051 51
526+475

2

= 0.101 0.475

8 46 571 429 0.046 46
475+429

2

= 0.102 0.429

9 41 612 388 0.041 41
429+388

2

= 0.100 0.388

10 37 659 341 0.037 37
388+341

2

= 0.101 0.341

11 34 683 317 0.034 34
341+317

2

= 0.103 0.317

12 31 714 286 0.031 31
317+286

2

= 0.102 0.286

13 28 742 258 0.028 28
286+258

2

= 0.102 0.258

14 64 806 194 0.064 64
258+194

2

= 0.283 0.194

15 76 882 118 0.076 76
194+118

2

= 0.487 0.118

16 62 944 56 0.062 62
118+56

2

= 0.713 0.056

17 40 984 16 0.040 40
56+16

2

= 1.111 0.016

18 12 996 4 0.012 12
16+4

2

= 1.2 0.004

19 4 1000 0 0.004 4
4+0
2

= 2 0.000

Table 1.1

If n1 is the number of specimens that failed during first unit of time, n2 be that during second unit of time,
. . ., nl be that during the last (lth) unit of time, then the MTTF for the N specimens will be

MTTF =
n1 + 2n2 + · · ·+ lnl

N
,

where N = n1 + n2 + · · ·+ nl. If the time interval is δt unit instead of 1 unit, then

MTTF =
n1 + 2n2 + · · ·+ lnl

N
δt

=

∑l
k=1 knk

N
δt.

Example 1.2.7. In the life testing of 100 specimens of a particular device, the number of failures during each
time interval of 20 hours is shown in the following table:

4 UNIT 1.

Time Interval (T)(in hours) Number of failures during the interval
T ≤ 100 0

1000 < T ≤ 1020 25
1020 < T ≤ 1040 40
1040 < T ≤ 1060 20
1060 < T ≤ 1080 10

Estimate the MTTF for these specimens.

Solution. As the number of specimens tested is large, it is tedious to record the time of failure for each
specimen. So we note the number of specimen that fail during each 20 hours interval. Thus

MTTF =
(0× 1000) + (25× 1020) + (40× 1040) + (20× 1060) + (10× 1080)

100
= 1040 hrs.

■

Example 1.2.8. The following table gives the results of tests conducted under severe adverse conditions on
1000 safety valves. Calculate the failure density fd(t) and the hazard rates Z(t) where the time interval is 4
hours instead of 1 hour.

Time Interval (in hours) Number of failures (h)
t = 0 0

0 < t ≤ 4 267
4 < t ≤ 8 59
8 < t ≤ 12 36
12 < t ≤ 16 24
16 < t ≤ 20 23
20 < t ≤ 24 11

Solution.
Time Number of Cumulative Number of Failure Failure/ Reliability

interval failures frequency Survivals(S) density(fd) Hazard rate(Z(t)) (R)

t = 0 0 0 1000 0 0 1

0 < t ≤ 4 267 267 733 0.067 267
4(1000+733)

2

= 0.077 1− 0.067 = 0.933

4 < t ≤ 8 59 326 674 0.0148 56
4(733+674)

2

= 0.021 1− (0.067 + 0.0148)

= 0.9182
8 < t ≤ 12 36 362 638 0.009 36

4(674+638)
2

= 0.014 0.9092

12 < t ≤ 16 24 386 614 0.006 24
4(638+614)

2

= 0.009 0.9032

16 < t ≤ 20 23 409 591 0.0057 23
4(614+591)

2

= 0.009 0.8975

20 < t ≤ 24 11 420 580 0.0027 11
4(591+580)

2

= 0.0047 0.8948

■

Four Important Points

(i) Sum of the failure densities is 1, that is,

fd1 + fd2 + · · ·+ fdl =

l∑
i=1

fdi = 1 (For discrete case)

∫ T

0
fd(ξ)dξ = 1,

1.2. RELIABILITY 5

where the limits of the integration are taken from the beginning of the first at t = 0 till the end where
all the specimens failed at time t = T .

(ii) The reliability R(i) for the ith hour is given by

R(i) = 1− (fd1 + fd2 + · · ·+ fdi)

= 1−
i∑

k=1

fdk [For discrete case]

Hence the reliability R(t), for the tth hour for continuous case is given by

R(t) = 1−
∫ t

0
fd(ξ)dξ

=

∫ T

t
fd(ξ)dξ[For continuous case].

(iii) The probability of failure in hours, F (i) is given by

F (i) = fd1 + fd2 + · · ·+ fdi =

i∑
k=1

fdk ,

that is, R(i) + F (i) = 1.

Since the reliability and probability of failure are complementary so, R(t) + F (t) = 1. Thus for
continuous case,

F (t) = 1−R(t) =

∫ t

0
fd(ξ)dξ.

(iv) The failure rate or hazard rate for the ith hour is

Z(i) =
ni

1
2

(
N −

∑i−1
k=1 nk

) =
2[R(i− 1)−R(i)]

R(i− 1) +R(i)
.

(For one hour interval between t = (i− 1) hr to t = i hr)

If the interval is δt, instead of 1 hour, then for continuous case,

Z(t) =
2[R(t− δt)−R(t)]

[R(t− δt) +R(t)]δt

i.e, Z(t+ δt) =
2[R(t)−R(t+ δt)]

[R(t) +R(t+ δt)]δt

For continuous case, when δt → 0, we have

lim
δt→0

Z(t+ δt) = lim
δt→0

2[R(t)−R(t+ δt)]

[R(t) +R(t+ δt)]δt

⇒ Z(t) = lim
δt→0

R(t)−R(t+ δt)

R(t)δt

= − 1

R(t)
lim
δt→0

R(t+ δt)−R(t)

δt

= − 1

R(t)

d

dt
(R(t))

= −R′(t)

R(t)
(1.2.1)

6 UNIT 1.

Thus, ∫ t

0
Z(t)dt = −[logR(t)]t0

⇒ logR(t) = logR(0)−
∫ t

0
Z(t)dt

Since at t = 0, R(0) = 1, that is, logR(0) = 0, thus,

R(t) = e−
∫ t
0 Z(ξ)dξ (1.2.2)

Finally we shall get an expression for fd(t) for continuous case.

By definition, we have

fd(t+ δt) =
(no. of survivals at time t = t)− (no. of survivals at time t = t+ δt)

δt.(total number of survivals)

or, fd(t+ δt) =

[(
no. of survivals at t = t

total no. of survivals

)
−
(

no. of survivals at t = t+ δt

total no. of survivals

)]
1

δt

=
1

δt
[R(t)−R(t+ δt)]

Letting δt → 0, we get for continuous case,

fd(t) = − lim
δt→0

R(t+ δt)−R(t)

δt
= −R′(t) (1.2.3)

From equations (1.2.1) and (1.2.3), we get

Z(t) =
fd(t)

R(t)

⇒ fd(t) = Z(t)R(t)

= Z(t) e−
∫ t
0 Z(ξ)dξ (1.2.4)

1.3 MTTF in terms of failure density

The mean time to failure is given by

MTTF =

(∑l
k=1 knk

)
δt

N
,

where N is the initial total survivals; n1 is the total no. of specimens that failed during the first δt time
interval, n2 is the total no. of specimens that failed during the second δt time interval, ... , nk is the total no.
of specimens failed during the kth δt interval. Now, by definition

fdk =
nk

N.δt

⇒ nk

N
= fdkδt.

Further, fδt is the elapsed time t. Hence the expression for MTTF can be written as

MTTF =
l∑

k=1

(k.fdk .δt)δt =
l∑

k=1

fdk(kδt)δt (1.3.1)

1.3. MTTF IN TERMS OF FAILURE DENSITY 7

where the summation is for the period from the first δt time interval to lth δt interval.
For continuous case, when δt → 0, and fδt is the elapsed time t and fdk will be the failure density fd(t) at

time t, then

MTTF =

∫ T

0
tfd(t)dt, (1.3.2)

where T is the number of hours after which there are no survivals.
Now we have, F (t) +R(t) = 1. Thus,

F (t) = 1−R(t) =

∫ t

0
fd(ξ)dξ

Thus,
d

dt
(F (t)) = − d

dt
(R(t)) = fd(t).

Thus,

MTTF =

∫ ∞

0
tfd(t)dt [For t > T, there are no survivals, so the values of the integration is 0, for t > T]

=

∫ ∞

0
−t

d

dt
(R(t))dt

= −[t.R(t)]∞0 +

∫ ∞

0
1.R(t)dt

=

∫ ∞

0
R(t)dt [Since R(0) = 1 and R(∞) = 0 as t → ∞, there are no survivals] (1.3.3)

Also, when t1 ≤ t ≤ t2, we have,

F (t2)− F (t1) =

∫ t2

t1

fd(ξ)dξ.

For continuous case, when the hazard rate is constant, that is, Z(t) = λ, a constant, say, then∫ t

0
Z(ξ)dξ =

∫ t

0
λdξ = λt.

Thus,
R(t) = e−

∫ t
0 Z(ξ)dξ = e−λt

and F (t) = 1− e−λt. Similarly,
fd(t) = Z(t)×R(t) = λ e−λt .

Thus,

MTTF =

∫ ∞

0
R(t)dt

=

∫ ∞

0
e−λt dt

= −
[

e−λt

λ

]∞
0

=
1

λ
.

Thus, for a constant hazard model, the MTTF is simply the reciprocal of the hazard rate.

8 UNIT 1.

The constant hazard rate is also known as the exponential reliability rate.

MTTF =

∫ ∞

0
tfd(t)dt =

∫ ∞

0
t e−λt dt

= λ

[
t e−λt

−λ

]∞
0

+

∫ ∞

0

λ

λ
e−λt dt

= 0 +

∫ ∞

0
e−λt dt =

1

λ
.

The mean of λ e−λt is ∫ ∞

0
λt e−λt dt =

1

λ
.

Example 1.3.1. It is found that the random variations with respect to time in the output voltage of a particular
system are exponentially distributed with a mean value 100V. What is the probability that the output voltage
will be found at any time to lie in the range 90− 100V?

Solution. For an exponential distribution, the MTTF is the reciprocal of the hazard rate λ(say), where λ is a
constant, that is, MTTF= 1

λ .
Here, we identify the MTTF with a mean value 100V. Thus,

1

λ
= 100 ⇒ λ = 0.01.

Hence the p.d.f fd(t) for the voltage distribution is = λ e−λt = 0.01× e−0.01t.
Now, the probability that the voltage lies between V1 and V2 is given by

F (V2)− F (V1) =

∫ V2

V1

fd(t)dt

=

∫ V2

V1

λ e−λt dt

= 1− e−λ(V2−V1) .

Here, V2 = 100V, V1 = 90V.
Hence, F (100)− F (90) = 1− e−0.01(100−90) = 1− e−0.1 ≃ 0.095. ■

Example 1.3.2. It is observed that the failure pattern of an electronic system follows an exponential distribu-
tion with mean time to failure of 100 hours. What is the probability that the system failure occurs within 750
hours?

Solution. MTTF = 1
λ = 1000, where λ is the constant hazard rate. Thus,

λ =
1

1000
.

Thus,
fd(t) = λ e−λt

Hence the probability that the system failure occurs within a period V is

F (V) =

∫ V

0
fd(t)dt =

∫ V

0
λ e−λt dt = 1− e−λV .

Here, V = 750 hrs. and λ = 0.001. Thus,

F (750) = 1− e−0.750 ≃ 0.528.

■

Unit 2

Course Structure

• Linearly Increasing Hazard

• System Reliability

• Redundancy

2.1 Linearly Increasing Hazard

Here the hazard increases linearly with time, that is, Z(t) = kt, where k is a constant. Thus the time integral
of Z(t) is given by ∫ t

0
ktdt =

k

2
t2

Therefore,
R(t) = e−

∫ t
0 Z(ξ)dξ = e−

k
2 t2

And thus,
fd(t) = Z(t)×R(t) = kt e−

k
2
t2

This function fd(t) = kt e−
k
2
t2 is known as the Rayleigh density function.

Now,

d

dt
(fd(t)) = k e−

k
2
t2 +kt

(
−k

2
.2t e−

k
2
t2
)

= k e−
k
2
t2 [1− kt2]

and

d2

dt2
(fd(t)) = k

(
−k

2
.2t

)
e−

k
2
t2 [1− kt2] + k e−

k
2
t2 [−2kt]

= −k2t e−
k
2
t2 [1− kt2]− 2k2t e−

k
2
t2

= −3k2t e−
k
2
t2 +k3t3 e−

k
2
t2

9

10 UNIT 2.

Now,
d

dt
(fd(t)) = 0 ⇒ t =

1√
k

[since t > 0]

At t = 1√
k

,

d2

dt2
(fd(t)) =

−3k2√
k

e−
k
2
t2 +

k3

k
√
k

e−
k
2
t2

= −2k2√
k

e−
k
2
t2

= −2k
√
k e−

k
2
t2

= = −2k
√
k e−

k
2

1
k

= −2k
√
k√
e

< 0

Thus, fd(t) is maximum at t = 1√
k

. Thus

fd(t)
∣∣
t= 1√

k

= k.
1√
k

e−1/2 =
√
k e−1/2 =

√
k

e
.

Hence fd(t) reaches a maximum value
√

k
e at t = 1√

k
and tends to zero as t becomes larger. Now, we calculate

the MTTF when the hazard rate increases linearly.

MTTF =

∫ ∞

0
R(t)dt =

∫ ∞

0
e−k/2t2 dt

=

√
2

k

∫ ∞

0
e−z2 dz [Put

√
k

2
t = z]

=

√
2

k
.

√
π

2

=

√
π

2k
.

2.2 System Reliability

A. Series Configuration: The simplest combination of units that form a system is a series combination.
This is one of the most commonly used structures and is shown in the following figure: The system S

consists of n units which are connected in series as shown. Let the successful operation of these individ-
ual units be represented by X1, X2, . . . , Xn and their respective probabilities by P (X1), P (X2), . . . , P (Xn).

2.2. SYSTEM RELIABILITY 11

For the successful operation of the system, it is necessary that all n units function satisfactorily. Hence
the probability of the successful operation of all the units is P (X1 and X2 and · · · and Xn).

We shall assume that these units are not independent of one another, that is, the successful operation of
unit 1 might affect the successful operation of all other units and so on.

The system reliability is given by

P (S) = P (X1 and X2 and · · · and Xn)

= P (X1).P (X2|X1).P (X3|X1X2) . . . P (Xn|X1X2 . . . Xn−1).

If they are independent, then
P (S) = P (X1)P (X2) . . . P (Xn).

Example 2.2.1. In a hydraulic control system, the connecting linkage has a reliability factor 0.98 and
the valve which has a reliability factor 0.92. Also the pressure sensor which activates the linkage, has
a reliability factor 0.90. Assume that all the three elements namely the activator, the linkage and the
hydraulic valve are connected in series with independent reliability factors. What is the reliability of
the control system?

Solution. Let the successful operation of the elements namely the activator, the linkage and the hy-
draulic valve be denoted by X1, X2 and X3 respectively. Thus,

P (X1) = 0.98, P (X2) = 0.91, P (X3) = 0.90 (given)

Since these elements are connected in series with independent reliability factors, hence the reliability of
the control system, S(say) is

P (S) = P (X1)P (X2)P (X3) = 0.98× 0.92× 0.90 = 0.81144.

■

Note 2.2.2. There is an important point that the reliability of a series system is always worse than the
poorest component of the system.

Example 2.2.3. If the system consists of n identical units in series and if each unit has a reliability
factor p, determine the system reliability under the assumption that all units function independently.

Solution. P (S) = p.p . . . p(n times) = pn. Now, if q is the probability of failure of each unit, then
p = 1− q.

Hence the system reliability

P (S) = pn = (1− q)n = 1− nq + · · ·

If q is very small, this expression can be approximated to 1− nq. Thus,

P (S) ≃ 1− nq.

■

Example 2.2.4. A system has 10 identical equipments. It is desired that the system reliability be 0.95.
Determine how good each component should be?

12 UNIT 2.

Solution. Let p be the reliability factor of each equipment. Then

P (S) = 0.95 = p10 ⇒ p =
10
√
0.95 = 0.99488.

■

B. Parallel Configuration: Several systems exist in which successful operation depends on the satisfac-
tory functioning of any one of their n subsystems or elements. These are said to be connected in parallel.
We can also ass a system in which several signal paths perform the same operation and the satisfactory
performance of any one of these paths is sufficient to ensure the successful operation of the system. The
elements of such a system are said to be connected in parallel.

A block diagram representing a parallel configuration is shown in the figure below The reliability of the

system can be calculated very easily by considering the conditions for system failure.

Let X1, X2, . . . , Xn represent successful operation of units 1, 2, . . . , n respectively. Similarly, let
X1, X2, . . . , Xn respectively represent their successful operation, that is, the failure of the units.

If P (X1) is the probability of successful operation of unit 1, then P (X1) = 1 − P (X1), and so on.
For the complete failure of the system S, all the n units have to fail simultaneously. If P (S) is the
probability of failure of the system, then

P (S) = P (X1 and X2 and · · · and Xn)

= P (X1)P (X2|X1)P (X3|X1X2) . . . P (Xn|X1X2 . . . Xn−1)

The expression P (X3|X1X2) represents the probability of failure of unit 3 under the condition that
units 1 and 2 have failed.

The other terms can also be interpreted in the same manner. If the unit failures are independent of one
another, then

P (S) = P (X1)P (X2) . . . P (Xn)

= [1− P (X1)][1− P (X2)] . . . [1− P (Xn)].

Since if any one of them does not fail, then the problem of successful configuration of the system is

P (S) = 1− P (S).

2.2. SYSTEM RELIABILITY 13

For independent cases, P (S) = 1 − [1 − P (X1)][1 − P (X2)] . . . [1 − P (Xn)]. If the n elements are
identical and the unit failures are independent of one another, then

P (S) = 1− (1− P (X))n

where, P (X) = P (X1) = P (X2) = · · · = P (Xn).

Example 2.2.5. Consider a system consisting of three identical units connected in parallel. The unit
reliability factor is 0.10. If the unit failures are independent of one another and if the successful opera-
tion of the system depends on the satisfactory performance of any one unit, then determine the system
reliability.

Solution. P (S) = 1− (1− 0.10)3 = 1− 0.729 = 0.271. This reveals the important fact that a parallel
configuration can greatly increase system reliability with just three elements connected in parallel. ■

Example 2.2.6. A parallel system is composed of 10 independent identical components. If the system
reliability P (S), is to be 0.95, how poor can the components be?

Solution. Let P (X) be the probability of successful operation of each component. Thus,

P (S) = 1− (1− P (X))10 = 0.95

⇒ (1− P (X))10 = 1− 0.95

= 0.05

⇒ 1− P (X) =
10
√
0.05 = 0.74113

⇒ P (X) = 1− 0.74113 = 0.25887.

Each component can have a very low reliability factor of 0.2589 but still gives the system a reliability
factor as high as 0.95. ■

C. Mixed Configuration: Consider the following example:

Example 2.2.7. Find the reliability of the above system:

14 UNIT 2.

(KU 2011)

Solution. The complete system is composed of the following subsystems:

S1: 0.7 −→ 0.6 −→ 0.8

S2: 0.9 −→ 0.8

S3: 0.6 −→ 0.9

S4: 0.9 −→ 0.6

S5: 0.7 −→ 0.8 −→ 0.9
S6: S1||S2

S7: S3|| 0.8

S8: S4||S5|| 0.6

S9: S7 −→ 0.6
S10: S6||S9||S8

Now,

P (S1) = 0.7× 0.6× 0.8 = 0.336

P (S2) = 0.9× 0.8 = 0.72

P (S3) = 0.6× 0.9 = 0.54

P (S4) = 0.9× 0.6 = 0.54

P (S5) = 0.7× 0.8× 0.9 = 0.504

P (S6) = 1− [(1− P (S1))(1− P (S2))]

= 1− [(1− 0.336)(1− 0.72)] = 0.81408

P (S7) = 1− [(1− P (S3))(1− 0.8)]

= 1− [(1− 0.54)(1− 0.8)] = 0.908

P (S8) = 1− [(1− P (S4))(1− P (S5))(1− 0.6)]

= 1− [(1− 0.54)(1− 0.504)(1− 0.6)] = 0.908736

P (S9) = P (S7)× 0.6 = 0.908× 0.6 = 0.5448

P (S10) = 1− [(1− P (S6))(1− P (S9))(1− P (S8))]

= 1− [(1− 0.81408)(1− 0.5448)(1− 0.908736)] ≃ 0.99228.

Hence the system reliability is 0.99228. ■

2.3 Redundancy

If the state of art is such that either it is not possible to produce highly reliable components or the cost of
producing such components is very high, then we can improve the system reliability by the technique of
introducing redundancies.

This involves the deliberate creation of new parallel path in a system. If two elements A, B with probability
of success P (A) and P (B) are connected in parallel, then the probability of the successful operation of the
system,

P (A or B) = P (A) + P (B)− P (A and B)

= P (A) + P (B)− P (A)P (B),

2.3. REDUNDANCY 15

assuming that the elements are independent.
Since both P (A) and P (B) are less than 1, excluding the condition where P (A) = P (B) = 1, then their

product is always less than both P (A) and P (B).
This illustrates a simple method of improving the reliability of a system when the element reliability cannot

be increased. Although either one of the elements is sufficient for the successful operation of the system, we
deliberately use both elements so as to increase the reliability causing the system to become redundant.

Unit 3

Course Structure

• Information Theory: Fundamentals of Information theory

• Measures of information and characterisation

3.1 Introduction

In everyday life we observe that there are numerous means for the transmission of information. For example,
the information is usually transmitted by means of a human voice, i.e., as in telephone, radio, television etc.,
by means of letters, newspapers, books etc. We often come across sentences like

• We have received a lot of information about the postponement of examination.

• We have a bit of information that he will be appointed as a professor.

But few people have suspected that it is really possible to measure information quantitatively. An amount
of information has a useful numeric value just like an amount of sugar or an amount of bank balance. For
example, suppose a man goes to a new community to rent a house and asks an unreliable agent “is this house
cool in summer season?" If the agent answers ‘yes’, the man has received very little information, because
more than likely that agent would have answered ‘yes’ regardless of the facts. If on the other hand, the man
has a friend who lives in a neighbouring house, he can get more information by asking his friend the same
question because the answer will be more reliable.

In general way it would appear that the amount of information in the message should be measured by extent
of the change in probability produced by the message. There will be atleast three essential parts of simplest
communication system:

• Transmitter or Source,

• Communication channel or transmission network which carries the message from the transmitter to the
receiver,

• Receiver or Sink

Source −→ Channel −→ Receiver

16

3.2. FUNDAMENTAL THEOREM OF INFORMATION THEORY 17

3.2 Fundamental theorem of information theory

It is possible to transmit information through a noisy channel at any rate less than the channel capacity with
an arbitrarily small probability of error.

3.2.1 Origination

The information theory is an appealing name assigned to a scientific discipline which deals with the mathe-
matical theory of communication. The origin of information theory dates back to the work of R.V. Hartley
(“Transmission of informations", Bellsys technical journal vol. 7, 1928), who tried to develop a quantitative
measure of information in the telecommunication system. The field of information theory grown consider-
ably often the publication of C.E. Shannon’s (“A mathematical theory of communication", Bellsys technical
journal, vol. 27, 1948). Information theory answers two fundamental questions in communication system.

a) What is the ultimate data compression?

b) What is the ultimate data transmission rate?

For this reason, some consider information theory as a subset of communication theory. Indeed it has fun-
damental contribution in statistical physics, computer science, probability and statistics, Biology, Economics
etc. We see information only when we are in doubt which arises when there are number of alternatives and we
are uncertain about the outcome of the event. On the other hand, if the event can occur in just one way, there
is no uncertainty about it and no information is called for we get some information by the occurrence of the
event when there was some uncertainty before its occurrence. Therefore, the amount of information received
must be equal to the amount of uncertainty may be before the occurrence of the event.

3.3 Measure of information and characterisation

Let E be an event and p be its probability of occurrence. If we are told that the event E has occurred, then the
question is “what is the amount of information conveyed by this message?" If p is close to 1, then it is nearly
certain to occur and hence it conveys very little information. On the other hand, if p is close 0, then it is almost
certain that E will not occur and consequently the message starting with its occurrence is quite unexpected.
In general, let E1 and E2 are two events with p1 and p2 as their probability of occurrence respectively and let
p1 < p2.

Then the event E2 is more likely to occur and so the message conveying the occurrence of E2 contains low
information (bit information) than that conveying the occurrence of E1. Further if p2 continually decreased to
p1, the uncertainty associated with the occurrence of E2 increases continually corresponding to the event E1.

The above intuitive idea suggested that the measure of information conveyed by the message stating the
occurrence of event with the probability p must be a function of p only, say h(p), which is non-negative,
strictly decreasing, continuous and h(1) = 0. Also h(p) is very large when p is nearly equal to 0.

Next consider two events E1 and E2 with probability of occurrence p1 and p2 respectively. If we are told
that the event E1 has occurred, then we have received an amount of information h(p1). Giving this message,
the probability that E2 will occur is

p21 = p(E2|E1).

18 UNIT 3.

Suppose now we are told that the event E2 has also occurred. Then the additional amount of information
received is h(p21).

Therefore the total amount of information received form their two successive messages is

h(p1) + h(p21).

Assume that the events E1 and E2 are independent. Then

p21 = p2.

So the total amount of information received in this case is h(p1) + h(p2).

Again, the probability of both the events E1 and E2 is p1p2 and the amount of information conveyed by the
message stating that both the events E1 and E2 have occurred is h(p1p2).

So from the above considerations we have

h(p1p2) = h(p1) + h(p2).

Thus from the above discussion we see that the amount of information received from the message stating
that the event E with probability p has occurred is a function of p only, say h(p) and has the following
characterisations.

(i) h(p) is non-negative, continuous and strictly decreasing function in p in (0, 1].

(ii) h(1) = 0 and h(p) is very large when p is very close to 0, i.e., h(p) → ∞ as p → 0.

(iii) if E1 and E2 are independent events with probability of occurrence p1 and p2 respectively, then the
amount of information conveyed by the message stating that the occurrence of both events E1 and E2 is
equal to the amount of information conveyed by the massage dealing with the event E1 plus the amount
of information dealing with the event E2, i.e.,

h(p1p2) = h(p1) + h(p2).

Theorem 3.3.1. Let h(p) denote the amount of information received form the message stating the event E
with probability p has occurred. Then

h(p) = −k log p,

where, k is a positive constant.

Proof. The function h(p) has the following properties:

(i) h(p) is non-negative, continuous, strictly decreasing in (0, 1].

(ii) h(1) = 0 and h(p) → ∞ as p → 0.

(iii) h(p1p2) = h(p1) + h(p2).

Take any p ∈ (0, 1] and let n be a positive integer. We first show that

h(pn) = nh(p) (3.3.1)

3.3. MEASURE OF INFORMATION AND CHARACTERISATION 19

Clearly, (3.3.1) holds for n = 1.

Assume that (3.3.1) holds for the positive integer n. Then

h(pn+1) = h(pn · p)
= h(pn) + h(p) [using property (iii)]

= n h(p) + h(p)

= (n+ 1) h(p)

Therefore, (3.3.1) holds for the positive integer (n+ 1).

Hence by the principle of finite induction, (3.3.1) holds for all n ∈ N.

Let p ∈ (0, 1] and n ∈ N. Consider q = p1/n and q ∈ (0, 1].

∴ p = qn and h(p) = h(qn) = n h(q) (By (3.3.1)).

⇒ h(q) =
1

n
h(p)

⇒ h(p1/n) =
1

n
h(p) (3.3.2)

Let r be a positive rational number and r =
m

n
, where m,n ∈ N.

Then h(pr) = h(pm/n)

= h
((

p1/n
)m)

= m h(p1/n)

=
m

n
h(p)

= r h(p)

Let r be any positive number. Then choose any sequence {rn} of positive rational numbers such that rn → r
as n → ∞. For such n, we get

h(prn) = rn h(p).

Since h is a constant function, letting n → ∞, we get,

h(pr) = r h(p) (3.3.3)

Putting p = 1
2 in (3.3.3) we get

h

((
1

2

)r
)

= r h

(
1

2

)
(3.3.4)

Let p ∈ (0, 1]. We write r =
log p

log 1/2
so that r > 0 and

(
1

2

)r

= p. Substituting in (3.3.4), we get

h(p) = −h(1/2)

log 2
log p = −k log p where k =

h(1/2)

log 2

Since h is strictly decreasing and h(1) = 0, therefore

h(1/2) > 0 and so k > 0.

20 UNIT 3.

3.3.1 Units of information

Taking k = 1, we have h(p) = − log p. The choice of the base of the logarithmic amounts to the choice of
the units of information,

(i) when base 2, i.e., h(p) = − log2 p, the unit is ‘bits’.

(ii) when base is natural ‘e’, unit is ‘nats’

(iii) when base is 10, unit is ‘Hartley’

Note 3.3.2. 1 Har =3.32 bits and 1 nat =1.44 bits

Unit 4

Course Structure

• Entropy and its properties

4.1 Entropy (Shannon’s Definition)

Let X be the random variable with range {x1, x2, . . . , xn} and probability mass function (p.m.f)

ρX(x) =

{
pi for x = xi (i = 1, 2, . . . , n)
0 otherwise.

Then the quantity −
n∑

i=1

pi log pi is called the entropy of the random variable X and is denoted by H(x) or

Hn(p1, p2, . . . , pn).

∴ We have H(X) = Hn(p1, p2, . . . , pn) = −
n∑

i=1

pi log pi.

Clearly, H(X) ≥ 0.

Note 4.1.1. x log x → 0 as x → 0 and we have used the conversion that 0 log 0 = 0.

4.1.1 Units of entropy

(i) when base is 2, unit of entropy is bits

(ii) when base is e, unit of entropy is nats

(iii) when base is 10, unit of entropy is Hartley

21

22 UNIT 4.

4.1.2 Properties of entropy function

(Shannon’s characterization of entropy function)

1. For a fixed n, Hn(p1, p2, . . . , pn) is a continuous function of p1, p2, . . . , pn (0 ≤ pi ≤ 1, i =
1, 2, . . . , n). It is obvious from the definition of Hn.

2. If pi = 1
n , i = 1, 2, . . . , n, then

Hn(p1, p2, . . . , pn) = Hn

(
1

n
,
1

n
, · · · , 1

n

)
= −

n∑
i=1

1

n
log

1

n

= log n.

So, Hn

(
1

n
,
1

n
, · · · , 1

n

)
is strictly increasing function of n.

3.

Let s1 = p1 + p2 + . . .+ pn1

s2 = pn1+1 + pn1+2 + . . .+ pn2

.

sk = pnk−1+1 + pnk−1+2 + . . .+ pnk
, (nk = n)

and m1 = n1, m2 = n2 − n1, . . . ,mk = nk − nk−1

Then,

Hn(p1, p2, . . . , pn) = Hk(s1, s2, . . . , sk) + s1Hm1

(
p1
s1

,
p2
s1

, · · · , pn1

s1

)
+ s2Hm2

(
pn1+1

s2
, · · · , pn2

s2

)
+ · · ·+ skHmk

(
pnk−1+1

sk
, · · · , pnk

sk

)
.

The above relation may be expressed as follows:

If a random experiment is decomposed into several successive ones, then the original value of H is equal
to the weighted sum of the corresponding values of H with weights 1, s1, s2, . . . , sk.

Now, we have Hk(s1, s2, . . . , sk) = −
k∑

i=1

si log si.

∴ s1Hm1

(
p1
s1

,
p2
s1

, . . . ,
pn1

s1

)
= −s1

n1∑
i=1

pi
s1

log
pi
s1

= −
n1∑
i=1

pi log pi +

n1∑
i=1

pi log s1

= −
n1∑
i=1

pi log pi + s1 log s1.

4.1. ENTROPY (SHANNON’S DEFINITION) 23

Similarly, we find

s2Hm2

(
pn1+1

s2
, . . . ,

pn2

s2

)
= −

n2∑
i=n1+1

pi log pi + s2 log s2

...

skHmk

(
pnk−1

+ 1

sk
, . . . ,

pnk

sk

)
= −

nk∑
i=nk−1+1

pi log pi + sk log sk

Adding the above expressions, we get

Hn(p1, p2, . . . , pn) = −
nk∑
i=1

pi log pi

= −
n∑

i=1

pi log pi, where nk = n.

Theorem 4.1.2. For a fixed n, the entropy function Hn(p1, p2, . . . , pn) is maximum when p1 = p2 = . . . =
pn = 1

n and Hn(max) = log n.

Proof. We first show that log x ≤ x− 1 for all x > 0 and the equality holds for x = 1.

Let ϕ(x) = x− 1− log x for all x > 0.

∴ ϕ′(x) = 1− 1
x .

If x > 1, then ϕ′(x) > 0 and if 0 < x < 1, then ϕ′(x) < 0.

So ϕ(x) is a strictly increasing function in (1,∞) and strictly decreasing in (0, 1).

Therefore, ϕ(x) ≥ ϕ(1) = 0 for all x > 0.

∴ log x ≤ x− 1 for all x > 0 (4.1.1)

Let us take x =
1

npi
in (4.1.1) and we get

log
1

npi
≤ 1

npi
− 1

⇒ pi log
1

npi
≤ 1

n
− pi

⇒ −
n∑

i=1

pi log pi −
n∑

i=1

pi log n ≤ 1−
n∑

i=1

pi

⇒ −
n∑

i=1

pi log pi ≤ log n

(
∵

n∑
i=1

pi = 1

)
⇒ Hn(p1, p2, . . . , pn) ≤ log n (4.1.2)

24 UNIT 4.

When p1 = p2 = . . . = pn = 1
n , then

Hn(p1, p2, . . . , pn) = Hn

(
1

n
,
1

n
, . . . ,

1

n

)
= −

n∑
i=1

1

n
log

1

n

= log n (4.1.3)

From (4.1.2) and (4.1.3) we see that when the events are equally likely, Hn is maximum and its maximum
value is log n i.e.,

Hn(max) = log n

Note 4.1.3. In this case units are taken as ‘nats’, since

loge x = logD x logeD for any D ≥ 2.

Note 4.1.4. The entropy of X may be interpreted as the expected value of the function log 1
pi

where pi is the
p.m.f of X . Thus

E

[
log

1

pi

]
=

n∑
i=1

pi log
1

pi
= −

n∑
i=1

pi log pi = H(X).

Unit 5

Course Structure

• Bivariate Information Theory

• Joint, conditional and relative entropies

• Mutual Information

5.1 Joint, conditional and relative entropies

Let X,Y be two discrete random variables with ranges {x1, x2, . . . , xm} and {y1, y2, . . . , yn} respectively
and probability mass functions p(x) and q(y) and joint p.m.f p(x, y) = P (X = x;Y = y).

i) The joint entropy, H(X,Y) of the pair of random variables X,Y is defined as

H(X,Y) = −
m∑
i=1

n∑
j=1

p(xi, yj) log p(xi, yi)

= E

[
log

1

p(x, y)

]
(5.1.1)

(ii) The conditional entropy, H(X|Y) is defined by

H(X|Y) =

n∑
j=1

q(yj)H(X|Y = yj)

= −
n∑

j=1

q(yj)

m∑
i=1

p(xi|yj) log p(xi|yj)

= −
m∑
i=1

n∑
j=1

q(yj)p(xi|yj) log p(xi|yj)

= −
m∑
i=1

n∑
j=1

p(xi, yj) log p(xi|yj)

= Ep(x,y)

[
log

1

p(x|y)

]
25

26 UNIT 5.

Similarly, we can show that H(Y |X) = Ep(x,y)

[
log

1

p(y|x)

]
.

(iii) The relative entropy or Kullback-leibler distance between two probability mass functions p(x) and q(x)
with X = {x1, x2, . . . , xm} is defined as

D(p||q) =
m∑
i=1

p(xi) log
p(xi)

q(xi)

= Ep(x)

[
log

p(x)

q(x)

]

5.2 Mutual information

Let X and Y be two discrete random variables with ranges X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
respectively and probability mass functions p(x) and q(y) with joint p.m.f p(x, y) = p(X = x;Y = y). Then
the mutual information of the random variables X and Y is denoted by I(X;Y) and is defined by

I(X,Y) =

m∑
i=1

n∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)q(yj)

= D
(
p(x, y)||p(x)q(y)

)
= Ep(x,y)

[
log

p(x, y)

p(x)q(y)

]
.

Theorem 5.2.1. Let p1, p2, . . . , pn and q1, q2, . . . , qn be two sets of non-negative numbers and
n∑

i=1

pi =

n∑
i=1

qi, then

n∑
i=1

pi logD qi ≤
n∑

i=1

pi logD pi,

where D is any positive number greater than 1. Equality holds if and only if pi = qi for all i.

Proof. We use the convention 0 log 0 = 0. First consider the case when D = e and pi > 0, qi > 0 for all
i = 1, 2, . . . , n.

For any positive number x, we have
log x ≤ (x− 1) (5.2.1)

equality holds if and only if x = 1. Taking x =
qi
pi

in (5.2.1), we get

log
qi
pi

≤ qi
pi

− 1

Multiplying by pi and taking summation we get
n∑

i=1

pi log
qi
pi

≤
n∑

i=1

(qi − pi) = 0

⇒
n∑

i=1

pi log qi ≤
n∑

i=1

pi log pi (5.2.2)

5.2. MUTUAL INFORMATION 27

Now, let pk = 0 for some k and qk ̸= 0, but pi > 0, qi > 0 for i ̸= k. Then clearly (5.2.2) holds because
pk log pk = 0 and pk log qk = 0 if qk = 0 for some k but qk ̸= 0. pk log qk = −∞ and so (5.2.2) holds.

Suppose that the equality holds in (5.2.2). Also assume that pk ̸= qk for some k. Then
qk
pk

̸= 1 and so

log
qk
pk

<
qk
pk

− 1.

This gives

n∑
i=1

pi log
qi
pi

<
n∑

i=1

(qi − pi) = 0

⇒
n∑

i=1

pi log qi <
n∑

i=1

pi log pi

which contradicts (5.2.2) since here equality does not hold because
qk
pk

̸= 1.

∴ pi = qi for all i.

Now, let D ̸= e for any x > 0. Then logD x = logD e · loge x and logD e > 0. So, multiplying (5.2.2) by
logD e we get

n∑
i=1

pi logD qi ≤
n∑

i=1

pi logD pi.

Theorem 5.2.2. For any two discrete random variables X and Y

H(X,Y) ≤ H(X) +H(Y)

Equality holds if and only if X,Y are independent.

Proof. Let X,Y be two discrete random variables with ranges X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}
and probability mass functions (p.m.f) p(x) and q(y) with the joint p.m.f p(x, y) = p(X = x;Y = y). We
have

H(X) +H(Y) = −
m∑
i=1

p(xi) log p(xi)−
n∑

j=1

q(yj) log q(yj)

= −
m∑
i=1

n∑
j=1

p(xi, yj) log p(xi)−
m∑
i=1

n∑
j=1

p(xi, yj) log q(yj)

= −
m∑
i=1

n∑
j=1

p(xi, yj) log
(
p(xi)q(yj)

)
Also, H(X,Y) = −

m∑
i=1

n∑
j=1

p(xi, yj) log p(xi, yj)

Now,
m∑
i=1

n∑
j=1

p(xi)q(yj) =

m∑
i=1

p(xi)

n∑
j=1

q(yj) = 1 and
m∑
i=1

n∑
j=1

p(xi, yj) = 1

28 UNIT 5.

By Theorem 5.2.1, we have
m∑
i=1

n∑
j=1

p(xi, yj) log p(xi, yj) ≥
m∑
i=1

n∑
j=1

p(xi, yj) log
(
p(xi)q(yj)

)
⇒ −

m∑
i=1

n∑
j=1

p(xi, yj) log p(xi, yj) ≤ −
m∑
i=1

n∑
j=1

p(xi, yj) log
(
p(xi)q(yj)

)
⇒ H(X,Y) ≤ H(X) +H(Y)

Equality holds if and only if p(xi, yj) = p(xi)q(yj), i.e., if and if X, Y are independent random variables.

Theorem 5.2.3. For any two discrete random variables X and Y

H(X,Y) = H(X) +H(Y |X) = H(Y) +H(X|Y)

Proof. Let X, Y be two discrete random variables with ranges X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}
and p.m.f p(x) and q(y) with joint p.m.f p(x, y) = p(X = x;Y = y). Then

H(X) +H(Y |X) = −
m∑
i=1

p(xi) log p(xi)−
m∑
i=1

n∑
j=1

p(xi, yj) log p(yj |xi)

= −
m∑
i=1

n∑
j=1

p(xi, yj) log p(xi)−−
m∑
i=1

n∑
j=1

p(xi, yj) log p(yj |xi)

= −
m∑
i=1

n∑
j=1

p(xi, yj) log
(
p(xi) · p(yj |xi)

)
= −

m∑
i=1

n∑
j=1

p(xi, yj) log p(xi, yj) [∵ p(xi)p(yj |xi) = p(xi, yj)]

= H(X,Y)

In a similar way, we can show that

H(Y) +H(X|Y) = H(X,Y)

Theorem 5.2.4. For any two discrete random variables X and Y ,

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y |X)

Proof. We have

H(X)−H(X|Y) = −
m∑
i=1

p(xi) log p(xi) +

m∑
i=1

n∑
j=1

p(xi, yj) log p(xi|yj)

= −
m∑
i=1

n∑
j=1

p(xi, yj) log p(xi) +

m∑
i=1

n∑
j=1

p(xi, yj) log p(xi|yj)

=
m∑
i=1

n∑
j=1

p(xi, yj) log
p(xi|yj)
p(xi)

=
m∑
i=1

n∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)q(yj)

= I(X,Y)

5.2. MUTUAL INFORMATION 29

Similarly, we can show that
H(Y)−H(Y |X) = I(X;Y)

Note 5.2.5. I(X;Y)=I(Y,X)

Theorem 5.2.6. For any three discrete random variables X, Y, Z,

H
(
(X,Y)|Z

)
= H(X|Z) +H

(
Y |(X,Z)

)
Proof. Let X,Y, Z be three discrete random variables with ranges X = {x1, x2, . . . , xm}, Y = {y1, y2, . . . , yn}
and Z = {z1, z2, . . . , zk} respectively and probability mass functions are p(x), q(y) and r(z) with joint p.m.f
p(x, y, z) = p(X = x;Y = y;Z = z). Then

H(X|Z) +H
(
Y |(X,Z)

)
= −

m∑
i=1

k∑
l=1

p(xi, zl) log p(xi|zl)−
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log p(yj |(xi, zl))

= −
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log p(xj |zl)−
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log p(yj |(xi, zl))

= −
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log p(xi|zl)p(yj |(xi, zl))

= −
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log

(
p(xi, zl)

p(zl)
· p(xi, yj , zl)

p(xi, zl)

)

= −
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log

(
p(xi, yj , zl)

p(zl)

)

= −
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log p
(
(xi, yj)|zl

)
= H

(
(X,Y)|Z

)

Note 5.2.7. For n random variables

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi|Xi−1, Xi−2, . . . , X1)

5.2.1 Conditional mutual information

i) The conditional mutual information of random variables X, Y given Z is defined by

I(X;Y |Z) = H(X|Z)−H(X|(Y, Z))

= Ep(x,y,z)

[
log

p(X,Y |Z)

p(X|Z)p(Y |Z)

]

30 UNIT 5.

ii) The conditional mutual information of random variables X and Y given Z1, Z2, . . . , Zn is defined by

I(X;Y |Z1, Z2, . . . , Zn) = H(X|Z1, Z2, . . . , Zn)−H(X|(Y, Z1, Z2, . . . , Zn))

= Ep(x,y,z1,...,zn)

[
log

p(X,Y |Z1, Z2, . . . , Zn)

p(X|Z1, Z2, . . . , Zn)p(Y |Z1, Z2, . . . , Zn)

]

Theorem 5.2.8. (i) For the random variables X,Y, Z

I(X;Y,Z) = I(X;Y) + I(X;Z|Y) = I(X;Z) + I(X;Y |Z)

Proof.

I(X;Y) + I(X;Z|Y) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
+
∑
x

∑
y

∑
z

p(x, y, z) log
p(x, z|y)

p(x|y)p(z|y)

=
∑
x

∑
y

∑
z

p(x, y, z) log
p(x, y)

p(x)p(y)
+
∑
x

∑
y

∑
z

p(x, y, z) log
p(x, z|y)

p(x|y)p(z|y)

=
∑
x

∑
y

∑
z

p(x, y, z) log

{
p(x, y)

p(x)p(y)
· p(x, y, z)

p(y)
· p(y)

p(x, y)
· p(y)

p(y, z)

}
=

∑
x

∑
y

∑
z

p(x, y, z) log
p(x, y, z)

p(x)p(y, z)

= I(X;Y,Z)

Similarly, we can show that
I(X;Z) + I(X;Y |Z) = I(X;Y, Z)

Theorem 5.2.9. (ii) For the random variables X1, X2, . . . , Xn, Y

I(X1, X2, . . . , Xn;Y) =

n∑
i=1

I(Xi;Y |Xi−1, Xi−2, . . . , X1)

Proof. Follows from induction on n.

Theorem 5.2.10. (Information inequality): Let p(x) and q(x) for x ∈ X be two probability mass functions.
Then

D(p||q) ≥ 0

Proof. Let X = {x1, x2, . . . , xn} and let pi = p(xi), qi = q(xi), i = 1, 2, . . . , n. Then by definition,

D(p||q) =

n∑
i=1

p(xi) log
p(xi)

q(xi)

=
n∑

i=1

pi log
pi
qi

5.2. MUTUAL INFORMATION 31

Also we have
n∑

i=1

pi =
n∑

i=1

qi = 1. So, by Theorem 5.2.1,

n∑
i=1

pi log qi ≤
n∑

i=1

pi log pi

⇒
n∑

i=1

pi log
pi
qi

≥ 0

⇒ D(p||q) ≥ 0.

Theorem 5.2.11. (Non-negativity of mutual information) For any two random variables X and Y , I(X;Y) ≥
0.

Proof. Let X and Y be two discrete random variables with range {x1, x2, . . . , xm} and {y1, y2, . . . , yn} re-
spectively and the p.m.f p(x) and q(y), joint p.m.f p(x, y) = P (X = x, Y = y). Then the mutual information
I(X;Y) between X and Y is given by

I(X;Y) =
m∑
i=1

n∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)q(yj)
.

Now, we have

m∑
i=1

n∑
j=1

p(xi, yj) = 1 and
m∑
i=1

n∑
j=1

p(xi)q(yj) =
m∑
i=1

p(xi)
n∑

j=1

q(yj) = 1

So by Theorem 5.2.1

m∑
i=1

n∑
j=1

p(xi, yj) log p(xi, yj) ≥
m∑
i=1

n∑
j=1

p(xi, yj) log
(
p(xi)q(yj)

)
i.e.,

m∑
i=1

n∑
j=1

p(xi, yj) log
p(xi, yj)

p(xi)q(yj)
≥ 0

i.e., I(X;Y) ≥ 0.

Theorem 5.2.12. (Non-negativity of conditional mutual information) For any two random variables X and
Y given Z, the conditional mutual information I(X;Y |Z) ≥ 0.

Proof. Let X , Y , Z be three discrete random variables with ranges {x1, x2, . . . , xm}, {y1, y2, . . . , yn},
{z1, z2, . . . , zk} respectively and probability mass functions p(x), p(y), p(z) with joint p.m.f p(x, y, z) =
P (X = x, Y = y, Z = z).

Then by definition,

I(X;Y |Z) =
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log
p(xi, yj |zl)

p(xi|zl)p(yj |zl)

32 UNIT 5.

Now,
p(xi, yj |zl)

p(xi|zl)p(yj |zl)
=

p(xi, yj , zl)

p(zl)

p(zl)

p(xi, zl)

p(zl)

p(yj , zl)

=
p(xi, yj , zl)
p(xi,zl)p(yj ,zl)

p(zl)

∴ I(X,Y |Z) =

m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) log
p(xi, yj , zl)
p(xi,zl)p(yj ,zl)

p(zl)

Now,
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, yj , zl) = 1

and,
m∑
i=1

n∑
j=1

k∑
l=1

p(xi, zl)p(yj , zl)

p(zl)
=

m∑
i=1

k∑
l=1

p(xi, zl) ·
n∑

j=1

p(yj , zl)

p(zl)

=

m∑
i=1

k∑
l=1

p(xi, zl)
p(zl)

p(zl)

∵
n∑

j=1

p(yj , zl) = p(zl)

n∑
j=1

p(yj) = p(zl)


=

m∑
i=1

k∑
l=1

p(xi, zl)

= 1

Therefore, by Theorem 5.2.1, I(X;Y |Z) ≥ 0.

Unit 6

Course Structure

• Conditional Relative Entropy

• Channel Capacity

• Redundancy

6.1 Conditional relative entropy

The conditional relative entropy D(p(y|x)||q(y|x)) is the average of the relative entropies between the condi-
tional probability mass functions p(y|x) and q(y|x) averaged over the p.m.f p(x, y).

∴ D(p(y|x)||q(y|x)) =
∑
x

p(x)
∑
y

p(y|x) log p(y|x)
q(y|x)

=
∑
x

∑
y

p(x, y) log
p(y|x)
q(y|x)

= Ep(x,y)

[
log

p(Y |X)

q(Y |X)

]

6.1.1 Convex and Concave functions

Let I be an interval and f : I → R be a function. The function f is said to be convex if for any two points
x1, x2 (x1 ̸= x2) in I and λ, µ ≥ 0 with λ+ µ = 1, the relation

f(λx1 + µx2) ≤ λf(x1) + µf(x2)

holds. A function g : I → R is said to be concave if −g is convex.

6.1.2 Jensen’s Inequality

If f : R → R is a convex function and X is a random variable, then f(E · X) ≤ Ef(X), where E is a
constant. Moreover, if f strictly convex, then the equality implies that X is constant.

33

34 UNIT 6.

Theorem 6.1.1. (Log-Sum Inequality) Let a1, a2, . . . , an and b1, b2, . . . , bn be two sets of n non-negative
numbers. Then

n∑
i=1

ai logD
ai
bi

≥
n∑

i=1

ai logD

(∑
ai∑
bi

)
where D is any positive number and D > 1. Equality holds if and only if

ai
bi

is constant.

Proof. We use the conventions 0 log 0 = 0, a log
a

0
= +∞, 0 log

0

0
= 0. Without loss of generality we may

assume that ai > 0, bi > 0, i = 1, 2, . . . , n.

Consider the function f(t) = t logD t, t > 0. Therefore, we have

f ′(t) = (1 + loge t) logD e

f ′′(t) =
1

t
logD e > 0 for all t > 0

So, f(t) is strictly convex for t > 0.

Now consider

λ =

n∑
i=1

bi, αi =
bi
λ
, ti =

ai
bi

Then
n∑

i=1

αi = 1 and αi > 0 for all i.

So, by Jensen’s inequality, we have

n∑
i=1

αif(ti) ≥ f

(
n∑

i=1

αiti

)
(6.1.1)

⇒
n∑

i=1

bi
λ

ai
bi

logD

(
ai
bi

)
≥

(
n∑

i=1

ai
λ

)
logD

(
n∑

i=1

bi
λ

ai
bi

)

⇒
n∑

i=1

ai logD

(
ai
bi

)
≥

n∑
i=1

ai logD


n∑

i=1
ai

n∑
i=1

bi

 (6.1.2)

If
ai
bi

= constant = k (say), for i = 1, 2, . . . , n.

Then clearly equality in (6.1.2) holds.

Suppose that equality holds in (6.1.2) i.e., in (6.1.1). Then,

t1 = t2 = . . . = tn

⇒ a1
b1

=
a2
b2

= . . . =
an
bn

i.e.,
ai
bi

= constant; i = 1, 2, . . . , n

6.1. CONDITIONAL RELATIVE ENTROPY 35

Theorem 6.1.2. D(p||q) is convex in pair (p, q) i.e., if (p1, q1), (p2, q2) be two pairs of probability mass
functions and λ > 0, µ > 0 with λ+ µ = 1, then

D((λp1 + µp2)||(λq1 + µq2)) ≤ λD(p1||q1) + µD(p2||q2).

Proof. Let (p1, q1) and (p2, q2) be two pairs of probability mass functions and λ > 0, µ > 0 with λ+µ = 1.
Then by Log-Sum inequality, we have

(λp1(x) + µp2(x)) log
λp1(x) + µp2(x)

λq1(x) + µq2(x)
≤ λp1(x) log

λp1(x)

λq1(x)
+ µp2(x) log

µp2(x)

µq2(x)

= λp1(x) log
p1(x)

q1(x)
+ µp2(x) log

p2(x)

q2(x)

Now, taking summation we get

∑
x

{λp1(x) + µp2(x)} log
λp1(x) + µp2(x)

λq1(x) + µq2(x)
≤
∑
x

λp1(x) log
p1(x)

q1(x)
+
∑
x

µp2(x) log
p2(x)

q2(x)

⇒ D
(
(λp1 + µp2)||(λq1 + µq2)

)
≤ λD(p1||q1) + µD(p2||q2)

i.e., D(p||q) is convex in (p, q).

Theorem 6.1.3. The entropy function H(p) is a concave function of p.

Proof. The entropy function H(p) is defined by

H(p) = −
n∑

i=1

pi logD pi

Now,
∂H

∂pi
= −{1 + loge pi} logD e

∂2H

∂p2i
= − 1

pi
logD e

∂2H

∂pi∂pj
= 0, i ̸= j

The Hessian matrix is given by

∇2H(p) =


∂2H
∂p21

∂2H
∂p1∂p2

. . . ∂2H
∂p1∂pn

∂2H
∂p2∂p1

∂2H
∂p22

. . . ∂2H
∂p2∂pn

...
...

...
...

∂2H
∂pn∂p1

∂2H
∂pn∂p2

. . . ∂2H
∂p2n

 =


− 1

p1
0 . . . 0

0 − 1
p2

. . . 0
...

...
...

...
0 0 . . . − 1

pn

 logD e

Clearly, ∇2H(p) is negative definite for pi > 0, (∵ logD e > 0).

Hence, H(p) is a concave function of p.

36 UNIT 6.

Theorem 6.1.4. Non-negativity of conditional relative entropy

D
(
p(y|x)||q(y|x)

)
≥ 0.

Proof.

We have, D(p(y|x)||q(y|x)) =
∑
x

∑
y

p(x, y) log
p(y|x)
q(y|x)

=
∑
x

∑
y

p(x, y) log
p(x, y) q(x)

q(x, y) p(x)

Now,
∑
x

∑
y

p(x, y) · q(x) =
∑
x

∑
y

q(x, y) p(x) = 1

∴ By Theorem 5.2.1, D(p(y|x)||q(y|x)) ≥ 0.

Example 6.1.5. In a certain community, 25% of all girls are blondes, and 75% of all blondes are blue eyed.
Also, 50% of all girls in the community have blue eyes. If you know that a girl has blue eyes, how much
additional information do you being informed that she is blond?

Solution. Let p1 = probability of a girl being blonde = 0.25.

p2 = probability of a girl to have blue eyes if she is blonde = pblonde (blue eyes) = 0.75

p3 = p (blue eyes) = 0.50

p4 = p (blonde, blue eyes) = probability that a girl is blonde and has blue eyes

and px = p blue eyes (blonde) = probability that a blue eyed girl is blonde = ?

Then
p4 = p1p2 = p3px ⇒ px =

p1p2
p3

=
0.25× 0.75

0.50

If a girl has blue eyes, the additional information obtained by being informed that she is blonde is

log2
1

px
= log2

p3
p1p2

= log2 p3 − log2 p1 − log2 p2

= log2
1

2
− log2

1

4
− log2

3

4

= log2 4 + log2
4

3
− log2 2

= 1.41503

≈ 1.42 bits

■

Example 6.1.6. Evaluate the average uncertainty associated with the probability of events A, B, C, D with

probability of events
1

2
,
1

4
,
1

8
,
1

8
respectively.

6.1. CONDITIONAL RELATIVE ENTROPY 37

Solution.

We have, H

(
1

2
,
1

4
,
1

8
,
1

8

)
= −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
− 1

8
log

1

8

=
1

2
log2 2 +

1

2
log2 2 +

3

4
log2 2

=

(
1

2
+

1

2
+

3

4

)
log2 2

=
7

4
bits

which is the averaged uncertainty associated with the probability of events A, B, C, D. ■

Example 6.1.7. A transmitter has an alphabet consisting of 5 letters {x1, x2, x3, x4, x5} and the receiver has
an alphabet consisting of 4 letters {y1, y2, y3, y4}. The joint probabilities for communication are given below

y1 y2 y3 y4


x1 0.25 0.00 0.00 0.00
x2 0.10 0.30 0.00 0.00
x3 0.00 0.05 0.10 0.00
x4 0.00 0.00 0.05 0.10
x5 0.00 0.00 0.05 0.00

Determine the marginal, conditional and joint entropies for this channel. (Assume 0 log 0 ≡ 0)

Solution. The channel is described here by joint probabilities pij , i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4. Then the
conditional and marginal probabilities are easily obtained from pij’s as follows:

p10 = 0.25 + 0.00 + 0.00 + 0.00 = 0.25

p20 = 0.10 + 0.30 + 0.00 + 0.00 = 0.40

p30 = 0.00 + 0.05 + 0.10 + 0.00 = 0.15

p40 = 0.00 + 0.00 + 0.05 + 0.10 = 0.15

p50 = 0.00 + 0.00 + 0.05 + 0.00 = 0.05

p01 = 0.25 + 0.10 + 0.00 + 0.00 + 0.00 = 0.35

p02 = 0.00 + 0.30 + 0.05 + 0.00 + 0.00 = 0.35

p03 = 0.00 + 0.00 + 0.10 + 0.05 + 0.05 = 0.20

p04 = 0.00 + 0.00 + 0.00 + 0.10 + 0.00 = 0.10

By using the result, pj|i =
pij
pi0

, the conditional probabilities are given in the following channel matrix

y1 y2 y3 y4


x1 1 0 0 0
x2

1
4

3
4 0 0

x3 0 1
3

2
3 0

x4 0 0 1
3

2
3

x5 0 0 1 0

38 UNIT 6.

Marginal entropies:

∴ H(X) = −
5∑

i=1

pi0 log2 pi0

= −(0.25 log2 0.25 + 0.40 log2 0.40 + . . .+ 0.05 log2 0.05)

= 1.326 bits

∴ H(Y) = −
4∑

j=1

p0j log2 p0j

= 1.8556 bits

Conditional entropies

H(Y |X) = −
5∑

i=1

4∑
j=1

pij log2 pj|i = 0.6 bits

Similarly, H(X|Y) = H(X) +H(Y |X)−H(Y)

= 1.3260 + 0.6− 1.8336 = 0.0704 bits

Joint Entropy

H(X,Y) = H(X) +H(Y |X)

= 1.3260 + 0.6

= 1.9260 bits

■

6.2 Channel Capacity

Definition 6.2.1. Mutual information I(X;Y) indicates a measure of the average information per symbol
transmitted in the system. According to Shannon, in a discrete communication system, the channel capacity
is the maximum of the mutual information, i.e.,

C = max I(X;Y) = max{H(X)−H(X|Y)}

For noise free channel, I(X;Y) = H(X) = H(Y) = H(X,Y). Thus

C = max I(X;Y) = max{H(X)} = max

{
−

n∑
i=1

pi log pi

}
Since max{H(X)} occurs when all symbols have equal probabilities, hence the channel capacity for a noise
free channel is

C = − log

(
1

n

)
= log2 n bits/symbol.

6.3 Redundancy

i)

Absolute redundancy = C − I(X;Y)

= C −H(X)

= log n−H(X) (For noise free channel)

6.3. REDUNDANCY 39

ii)

Relative redundancy =
C − I(X;Y)

C

=
log n−H(X)

log n
= 1− H(X)

log n

iii)

Efficiency of a noise free system =
H(X)

log n
= 1− Relative redundancy.

Example 6.3.1. Find the capacity of the memory less channel specified by the channel matrix

P =


1
2

1
4

1
4 0

1
4

1
4

1
4

1
4

0 0 1 0
1
2 0 0 1

2


Solution. The capacity of the memoryless channel is given by

C = max I(X,Y)

= max{H(X) +H(Y)−H(X,Y)}

= −
4∑

i=1

pij log pij , j = 1, 2, 3, 4

= −
4∑

i=1

pi1 log pi1 −
4∑

i=1

pi2 log pi2 −
4∑

i=1

pi3 log pi3 −
4∑

i=1

pi4 log pi4

where

pi1 =

(
1

2
,
1

4
,
1

4
, 0

)
pi2 =

(
1

4
,
1

4
,
1

4
,
1

4

)
pi3 = (0, 0, 1, 0)

pi1 =

(
1

2
, 0, 0,

1

2

)

Thus, C =
1

2
log2

1

2
+ 2

(
1

4
log2

1

4

)
+ 4

(
1

4
log2

1

4

)
+ 1 log2 1 + 2

(
1

2
log2

1

2

)
=

3

2
log2 2 + 3 log2 2

=
9

2
bits/symbol

■

40 UNIT 6.

Example 6.3.2. Show that the entropy of the following probability distribution is 2−
(
1

2

)n−2

.

Events x1 x2 . . . xi . . . xn−1 xn xn+1

Probabilities
1

2

1

22
. . .

1

2i
. . .

1

2n−1

1

2n−1

1

2n

Solution. From the given data of the problem, we have

pi =
1

2i
, i = 1, 2, . . . , n− 1 and pn =

1

2n−1

and
n∑

i=1

pi =

[
1

2
+

1

22
+ . . .+

1

2n−1

]
+

1

2n−1

=
1

2

1− 1
2n−1

1− 1
2

+
1

2n−1

= 1− 1

2n−1
+

1

2n−1

= 1

The entropy function H is defined as

H(p1, p2, . . . , pn) = −
n∑

i=1

pi log pi

⇒ H(p1, p2, . . . , pn) = −
n−1∑
i=1

pi log pi − pn log pn

⇒ H(p1, p2, . . . , pn) = −
n−1∑
i=1

(
1

2i

)
log2

(
1

2i

)
− 1

2n−1
log2

(
1

2n−1

)

⇒ H(p1, p2, . . . , pn) =

n−1∑
i=1

(
1

2i

)
log2(2

i) +
1

2n−1
log2(2

n−1)

⇒ H(p1, p2, . . . , pn) =

n−1∑
i=1

i · 1

2i
+ (n− 1)

1

2n−1

⇒ H(p1, p2, . . . , pn) =

{
1

2
+

2

22
+

3

23
+ . . .+

n− 1

2n−1

}
+

n− 1

2n−1
(6.3.1)

⇒ 1

2
H(p1, p2, . . . , pn) =

{
1

22
+

2

23
+

3

24
+ . . .+

n− 1

2n

}
+

n− 1

2n
(6.3.2)

6.3. REDUNDANCY 41

Subtracting (6.3.2) from (6.3.1) we get,

1

2
H(p1, p2, . . . , pn) =

(
1

2
− 1

22

)
+

(
2

22
− 2

23

)
+

(
3

23
− 3

24

)
+ . . .

+

(
n− 1

2n−1
− n− 1

2n

)
+

(
n− 1

2n−1
− n− 1

2n

)
=

1

2
+

(
2

22
− 1

22

)
+

(
3

23
− 2

23

)
+

(
4

24
− 3

24

)
+ . . .

+

(
n− 1

2n−1
− n− 2

2n−1

)
− n− 1

2n
+

n− 1

2n

=
1

2
+

1

22
+

1

23
+ . . .++

1

2n−1

= 1−
(
1

2

)n−1

∴ H(p1, p2, . . . , pn) = 2−
(
1

2

)n−2

■

Example 6.3.3. If the probability distribution P = {p1, p2, . . .}, pi ≥ 0,
∞∑
i=1

pi = 1 is such that the entropy

function, H(P) = −
∞∑
i=1

pi log pi < ∞, then show that
∞∑
i=1

pi log i < ∞.

Solution. Let us assume that {pi} are decreasing in i, which is quite possible because reordering of the {pi}
does not affect the value of entropy. Then

1 =
∞∑
j=1

pj ≥
i∑

j=1

pj ≥ ipi

Thus we have − log pi > log i and consequently

∞∑
i=1

pi log i ≤ −
∞∑
i=1

pi log pi = H(P) < ∞.

Hence,
∞∑
i=1

pi log i < ∞.

■

The following example is similar.

Example 6.3.4. If the probability distribution Φ = (p1, p2, . . .), pi ≥ 0,
∞∑
i=1

pi = 1 is such that
∞∑
i=1

pi log i <

∞, then show that H(Φ) = −
∞∑
i=1

pi log pi < ∞.

42 UNIT 6.

Example 6.3.5. Let H be the entropy of the probability distribution p1, p2, . . . , pn. If H1 be the entropy of
the probability distribution p1 + p2, p3, . . . , pn, then show that

H −H1 = PsHs where Ps = p1 + p2 and Hs =

[
p1
Ps

log
Ps

p1
+

p2
Ps

log
Ps

p2

]
Solution. We have

H = −p1 log p1 − p2 log p2 − p3 log p3 . . .− pn log pn (6.3.3)

H1 = −(p1 + p2) log(p1 + p2)− p3 log p3 − . . .− pn log pn

= −Ps logPs − p3 log p3 − . . .− pn log pn (6.3.4)

Subtracting (6.3.4) from (6.3.3), we get

H −H1 = −p1 log p1 − p2 log p2 + Ps logPs

= Ps ·
1

Ps

[
− p1 log p1 − p2 log p2 + Ps logPs

]
= Ps

[
− p1
Ps

log p1 −
p2
Ps

log p2 +
p1 + p2

Ps
logPs

]
= Ps

[
p1
Ps

logPs −
p1
Ps

log p1 +
p2
Ps

logPs −
p2
Ps

log p2

]
= Ps

[
p1
Ps

log
Ps

p1
+

p2
Ps

log
Ps

p2

]
= Hs Ps

where Ps = p1 + p2, Hs =

[
p1
Ps

log
Ps

p1
+

p2
Ps

log
Ps

p2

]
. ■

Unit 7

Course Structure

• Coding Theory

• Expected or average length of a code

• Uniquely decodable code

7.1 Introduction

Coding theory is the study of the method for efficient transfer of information from source; the physical medium
through which the information transmitted for the channel, the telephone line and atmosphere are examples
of channel. The undesirable disturbances are called noises. The following diagram provides a rough idea of
the general information system:

Definition 7.1.1. Code: Let X be a random variable with range S = {x1, x2, . . . , xq} and let D be the D-ary
alphabet, i.e., the set of all finite strings of symbols {0, 1, 2, . . . , D − 1}. A mapping C : S → D will be

43

44 UNIT 7.

called a code for the random variable X and S is called the source alphabet and D is called the code alphabet.

If xi ∈ S, then C(xi) is called codeword. Corresponding to xi, the number of symbols in codeword C(xi)
is called the length of the codeword and it is denoted by l(xi).

Example 7.1.2. Let X be a random variable with range S = {x1, x2, x3, x4}, D = {0, 1} be the code
alphabet. Define C : S → D as follows

x1 → 0, x2 → 00, x3 → 01, x4 → 11

Then C is a code for the random variable X .

Definition 7.1.3. A code with code alphabet D = {0, 1} is called a binary code. A code with code alphabet
D = {0, 1, 2} is called a ternary code.

Definition 7.1.4. A code C is said to be non-singular code if the mapping C is one-to-one, i.e., if C(xi) ̸=
C(xj) for xi ̸= xj . Clearly the code C in Example 7.1.2 is a non-singular code.

Definition 7.1.5. Extension of code: Let X be a random variable with range S = {x1, x2, . . . , xq} and
D = {0, 1, 2, . . . , D − 1} as the code alphabet and C be a code for the random variable X . The n-th
extension of C is a mapping C∗ : Sn(= S × S × . . .× S(n times)) → D defined by

C∗(xi1, xi2, . . . , xin) = C(xi1) C(xi2) . . . C(xin)

Example 7.1.6. Let X be a random variable with range S = {x1, x2, x3, x4}, D = {0, 1} as the code alphabet
and C : S → D be a code defined by

x1 → 0, x2 → 00, x3 → 01, x4 → 11

Then the 2nd extension of the above code C is given by

x1x1 → 00, x1x2 → 000, x1x3 → 001, x1x4 → 001,

x2x1 → 000, x2x2 → 0000, x2x3 → 0001, x2x4 → 0011,

x3x1 → 010, x3x2 → 0100, x3x3 → 0101, x3x4 → 0111,

x4x1 → 110, x4x2 → 1100, x4x3 → 1101, x4x4 → 1111.

The 3rd extension is

x1x2x3 → 000001; x1x2x4 → 00011, . . . so on.

7.1.1 Expected or average length of a code

Let X be a random variable with range S = {x1, x2, . . . , xq} and p.m.f p(x). Let D = {0, 1, 2, . . . , D − 1}
be the code alphabet. Then the expected length of the code C for the random variable X is denoted by L(C)
and is defined by

L(C) =

q∑
i=1

p(xi)l(xi) =

q∑
i=1

pili

7.1. INTRODUCTION 45

7.1.2 Uniquely decodable (separable) code

A code is said to be uniquely decodable if all its extensions including itself are non-singular. For example,
the code C in Example 7.1.6 is non-singular but its second extension is not singular. So it is not uniquely
decodable (∵ x1x2 ̸= x2x1 but C(x1, x2) = C(x2, x1) = 000).

Examples of uniquely decodable codes are given below:

(a) x1 → 0, x2 → 10, x3 → 110, x4 → 111

(b) x1 → 0, x2 → 01, x3 → 011, x4 → 0111

Example 7.1.7. Let X be a random variable with range S = {x1, x2, x3, x4} and code alphabet D = {0, 1}
with p.m.f p(x) defined by

p(x1) =
1

2
, p(x2) =

1

4
, p(x3) =

1

8
= p(x4)

Let the code C be defined as follows:

x1 → 0, x2 → 10, x3 → 110, x4 → 111

∴ l(x1) = 0, l(x2) = 2, l(x3) = 3, l(x4) = 3

∴ Expected length of C, L(C) = 0 · 1
2
+ 2 · 1

4
+ 3 · 1

8
+ 3 · 1

8
= 1.25

Definition 7.1.8. Prefix: Let i1i2 . . . im be a codeword for some code C. Then i1i2 . . . iν , ν ≤ m is called
the prefix of the codeword i1i2 . . . im. From definition it follows that every codeword is a prefix of itself.

Definition 7.1.9. Prefix code or instantaneous code: This is a code in which no codeword is a prefix of
any other codeword. For example, the code in Example 7.1.7 is an instantaneous code whereas the code in
Example 7.1.2 is not an instantaneous code. Another example of instantaneous code is the code defined by

x1 → 00, x2 → 01, x3 → 10, x4 → 110

Theorem 7.1.10. An instantaneous code is uniquely decodable.

Proof. Let S = {x1, x2, . . . , xq} be the source alphabet and D = {0, 1, 2, . . . , D − 1} be the code alphabet
for a random variable X .

Let C : S → D be an instantaneous code of the random variable X . The codewords are C(x1), C(x2), . . . ,
C(xq). Since no codeword is a prefix of any other codeword, we have C(xi) ̸= C(xj) for xi ̸= xj .

So C is one-to-one. Assuming C is not uniquely decodable, then there is a positive integer n > 1 such that
2nd, 3rd, . . . , (n+ 1)th extension of C are one to one. But the nth extension is not one-to-one.

So, there are two elements

x = xi1xi2 . . . xin and y = yν1yν2 . . . yνn in S such that x ̸= y (7.1.1)

But
Cn(x) = Cn(y) (7.1.2)

Write x′ = xi2xi3 . . . xin and y′ = yν2yν3 . . . yνn , then

x = xi1x
′, y = yν1y

′

46 UNIT 7.

∴ We have Cn(x) = C(xi1)C(xi2) . . . C(xin)

= C(xi1)C
n−1(x′) (7.1.3)

Similarly, Cn(y) = C(yν1)C
n−1(y′)

Without loss of generality, we may suppose that

l(xi1) ≤ l(yν1) (7.1.4)

where l(xi1) is the length of the codeword C(xi1) and l(yν1) be that of C(yµ1). From (7.1.2), and (7.1.3)
(7.1.4), it follows that the codeword C(xi1) is a prefix of the codeword C(yν1). Since C is an instantaneous
code, it follows that

xi1 = yν1 ⇒ Cn−1(x′) = Cn−1(y′)

Since Cn−1 is one-to-one, we have x′ = y′. So, we have x = y [∵ xi1 = yν1] which contradicts (7.1.1).

Hence C is uniquely decodable code.

Theorem 7.1.11. Kraft inequality for instantaneous code: Let S = {x1, x2, . . . , xq} be the source al-
phabet and D = {0, 1, 2, . . . , D − 1} be a code alphabet for a random variable X . Then a necessary and
sufficient condition for the existence of an instantaneous code for the random variable X with codeword
lengths l1, l2, . . . , lq formed by the elements of D is that

q∑
i=1

D−li ≤ 1.

Proof. We first show that the condition is sufficient assuming that we have given codeword lengths l1, l2, . . . , lq
satisfying the condition

q∑
i=1

D−li ≤ 1. (7.1.5)

We show that there exists an instantaneous code for the random variable X with these codeword lengths. The
lengths l1, l2, . . . , lq may or may not be distinct. We shall find it useful to consider all codewords of the same
length at a time.

Let l = max{l1, l2, . . . , lq}. We denote by n1, the number of codewords of length 1; by n2, the number of
codewords of length 2, and so on.

∴ n1 + n2 + . . .+ nl = q. (7.1.6)

The inequality (7.1.5) may be written as
l∑

i=1

niD
−i ≤ 1 (7.1.7)

Multiplying (7.1.7) by Dl, we have

l∑
i=1

niD
l−i ≤ Dl

nl ≤ Dl − n1D
l−1 − n2D

l−2 − . . .− nl−1D (7.1.8)

From (7.1.8), we have,
nl−1 ≤ Dl−1 − n1D

l−2 − n2D
l−3 − . . .− nl−2D (7.1.9)

7.1. INTRODUCTION 47

Proceeding in this way we obtain,

nl−2 ≤ Dl−2 − n1D
l−3 − n2D

l−4 − . . .− nl−3D

· · · · · · · · · · · · · · · · · ·
n3 ≤ D3 − n1D

2 − n2D

n2 ≤ D2 − n1D

(7.1.10)

We form n1 codewords of length 1. Then there are (D − n1) unused codewords of length 1 which may be
used as prefixes. By adding one symbol to the end of these permissible prefixes we may form as many as
(D− n1)D = D2 − n1D codewords of length 2. The inequalities (7.1.10) assures that we need no more than
these number of (i.e., D2 − n1D) codewords of length 2. As before, we chose n2 codewords arbitrarily from
(D2 − n1D) choices and we are left with (D2 − n1D − n2) unused prefixes of length 2 with which we may
form (D2 − n1D − n2)D = D3 − n1D

2 − n2D codewords of length 3. We select arbitrarily n3 codewords
from them and left with D3 − n1D

2 − n2D − n3 unused prefixes of length 3.

Continuing this process we obtain a code in which no codeword is prefix of any other codeword. So the
code constructed is an instantaneous code.

We now show that the condition is necessary. Suppose that the codewords C(x1), C(x2), . . . , C(xq) of
lengths l1, l2, . . . , lq for an instantaneous code for a random variable X .

Let l = max{l1, l2, . . . , lq} and let ni(i = 1, 2, . . . , l) denote the number of codewords of length i.

There are all together D codewords of length 1 of which only n1 codewords have been used. So (D − n1)
codewords of length 1 are left unused. By adding one symbol to the end of these (D−n1) permissible prefixes
we may form as (D− n1)D = D2 − n1D codewords of length 2. Of these (D2 − n1D) codewords of length
2, n2 are used.

∴ n1 ≤ D, n2 ≤ D2 − n1D

Similarly,

n3 ≤ D3 − n1D
2 − n2D

n4 ≤ D4 − n1D
3 − n2D

2 − n3D

· · · · · · · · · · · ·
nl ≤ Dl − n1D

l−1 − n2D
l−2 − . . .− nl−1D

⇒ nl + nl−1D + nl−2D
2 + . . .+ n1D

l−1 ≤ Dl

⇒
l∑

i=1

niD
−i ≤ 1

⇒
q∑

i=1

D−li ≤ 1

Definition 7.1.12. Optimal code: An instantaneous code is said to be optimal if the expected length of the
code is less than or equal to the expected length of all other instantaneous codes for the same source alphabet
and the same code alphabet.

48 UNIT 7.

Theorem 7.1.13. Let S = {x1, x2, . . . , xq} be the source alphabet and D = {0, 1, 2, . . . , D − 1} be the
code alphabet for a random variable X . Then the expected length L∗ of an optimal instantaneous code for the
random variable X is given by

L∗ =
H(X)

logD
,

where H(X) is the entropy of the random variable X .

Theorem 7.1.14. Let S = {x1, x2, . . . , xq} be the source alphabet and D = {0, 1, 2, . . . , D− 1} be the code
alphabet for the random variable X with p.m.f p(X). Then the expected length L(C) of any instantaneous
code C for X satisfies the inequality

L(C) ≥ H(X)

logD
.

Proof. Let pi = p(xi) = P (X = xi) and li = l(xi). Since C is an instantaneous code, by Kraft inequality

q∑
i=1

D−li ≤ 1. (7.1.11)

For any x > 0, we have
log x ≤ x− 1. (7.1.12)

Write µ =

q∑
i=1

D−li , 0 < µ ≤ 1. Taking x =
D−li

µpi
in inequality (7.1.12), we get

log
D−li

µpi
≤ D−li

µpi
− 1

−li logD − logµ− log pi ≤
D−li

µpi
− 1

Multiplying by pi and taking sum we get

−
q∑

i=1

pili logD −
q∑

i=1

pi logµ−
q∑

i=1

pi log pi ≤
q∑

i=1

D−li

µ
−

q∑
i=1

pi

⇒ −L(C) logD − logµ+H(X) ≤ 1

µ
· µ− 1

⇒ H(X)− L(C) logD ≤ logµ

[
∵ µ =

q∑
i=1

D−li ,

q∑
i=1

pi = 1, L(C) =

q∑
i=1

pili

]
⇒ H(X)− L(C) logD ≤ 0 [∵ 0 < µ ≤ 1, logµ ≤ 0]

⇒ L(C) ≥ H(X)

logD

Theorem 7.1.15. Let L∗ be the expected length of an instantaneous optimal code for the random variable X
with code alphabet D = {0, 1, 2, . . . , D − 1}. Then

H(X)

logD
≤ L∗ ≤ H(X)

logD
+ 1,

where H(X) is the entropy function of the random variable X .

7.1. INTRODUCTION 49

Proof. Let S = {x1, x2, . . . , xq} be the source alphabet and D = {0, 1, . . . , D − 1} be the code alphabet of
the random variable X with p.m.f p(x).

Let us define pi = p(xi) = P (X = xi), li = l(xi). Now, L∗ be the minimum value of
q∑

i=1

pili subject to

the constraint
q∑

i=1

D−li ≤ 1 (7.1.13)

We neglect the integer constraint on l1, l2, . . . , lq and assume the inequality (7.1.13) hold.

The choice of the codeword length li = − log pi
logD

, (i = 1, 2, . . . , q) gives

L =

q∑
i=1

pili =

q∑
i=1

−pi log pi
logD

=
H(X)

logD
.

∵ − log pi
logD

may not equal to an integer

Therefore, we round it upto the even integer. So we take li =
[
− log pi

logD

]
, where for any real x > 0, [x] denote

the greatest positive integer not greater than x. Then

− log pi
logD

≤ li ≤ − log pi
logD

+ 1 (7.1.14)

From (7.1.14), we have

− log pi ≤ li logD

⇒ log pi ≥ logD−li

⇒ pi ≥ D−li

Therefore,
q∑

i=1

D−li ≤
q∑

i=1

pi = 1

Thus the codeword lengths l1, l2, . . . , lq satisfies the Kraft inequality.
Hence the code with word lengths l1, l2, . . . , lq as chosen is an instantaneous code.

Multiplying (7.1.14) by pi and taking sum, we get

−
q∑

i=1

pi log pi
logD

≤
q∑

i=1

pili ≤ −
q∑

i=1

pi log pi
logD

+

q∑
i=1

pi

⇒ H(X)

logD
≤ L ≤ H(X)

logD
+ 1 (7.1.15)

Since L∗ is the expected length of the optimal code, hence we have

H(X)

logD
≤ L∗ ≤ L (7.1.16)

50 UNIT 7.

From (7.1.15) and (7.1.16) the result follows.

∴
H(X)

logD
≤ L∗ ≤ H(X)

logD
+ 1.

Example 7.1.16. Let S = {x1, x2, . . . , xq} be the source alphabet and D = {0, 1, . . . , D − 1} be the code
alphabet of the random variable X with p.m.f p(Xi) = D−αi , where α1, α2, . . . , αq are positive integers.
Show that any code C : S → D for X with codeword lengths α1, α2, . . . , αq is an instantaneous optimal
code.

Solution. Let C be any code for the random variable X with codeword lengths li = l(xi) = αi, i =
1, 2, . . . , q. Then

q∑
i=1

D−li =

q∑
i=1

D−αi =

q∑
i=1

pi = 1

Thus the codeword lengths l1, l2, . . . , lq of the code C satisfy Kraft inequality. Hence C is an instantaneous
code. Again

pi = D−αi = D−li

∴ log pi = −li logD

⇒ −
q∑

i=1

pi log pi =

q∑
i=1

lipi logD

⇒ H(X) = L(C) logD

⇒ L(C) =
H(X)

logD

Therefore, the expected length L(C) of the code C is minimum. Hence C is an instantaneous optimal code.
■

Definition 7.1.17. Efficiency of a code: Let C be a uniquely decodable D-ary code for the random variable
X and L(C) be its expected length. Then the efficiency η of the code C is defined by

η =
H(X)

L(C) logD

Redundancy of a code = β = 1− η.

Theorem 7.1.18. Let C∗ be a code of the random variable X of the following distribution

X : x1 x2 . . . xn

pi : p1 p1 . . . pn

where p1 ≥ p2 ≥ . . . ≥ pn. If L(C∗) ≤ L(C) for any code C of X , then l∗1 ≤ l∗2 ≤ . . . ≤ l∗n where l∗i is the
length of the code C∗(xi).

If pi = pi+1, it is assumed that l∗i ≤ l∗i + 1.

7.1. INTRODUCTION 51

Proof. Let E = {1, 2, . . . , n}. We take any two elements i and j of E with i < j. Denote by α, the permuta-
tion of the set E such that α(i) = j and α(j) = i but all other elements of E remain unchanged.

Let C be a code of the random variable X such that lk = l∗α(k), where lk is the length of the codeword
C(xk). Then

li = l∗α(i) = l∗j [∵ α(i) = j]

and lj = l∗α(j) = l∗i [∵ α(j) = i]

and lk = l∗k for all other elements k of E.

L(C)− L∗(C) = pili + pjlj − pil
∗
i − pjl

∗
j

= pil
∗
j + pjl

∗
i − pil

∗
i − pjl

∗
j

= (pi − pj)(l
∗
j − l∗i) [∵ li = l∗j ; lj = l∗i]

Since pi ≥ pj , we must have

l∗i ≤ l∗j .

∴ l∗1 ≤ l∗2 ≤ . . . ≤ l∗n

Hence the result follows.

Unit 8

Course Structure

• Shannon-Fano Encoding Procedure for Binary code

8.1 Shannon-Fano Encoding Procedure for Binary code:

Let S = {x1, x2, . . . , xq} be the source alphabet and D = {0, 1} be the code alphabet of a random variable
X with p.m.f p(x). We shall give here an encoding procedure of assigning an efficient uniquely decodable
binary code for the random variable X . This is known as Shannon-Fano encoding procedure.

Let pi = p(xi) = P (X = xi), i = 1, 2, . . . , q.

The two necessary requirements are

(i) No complete codeword can be prefix of some other codeword.

(ii) The binary digit in each codeword appeared independent with equal probabilities.

The encoding procedure follows the following steps.

Step 1: We arrange source symbols in descending order of their probabilities.

Step 2: Partition the set S of source symbols into two equiprobable groups S0 and S1 as

S0 = {x1, x2, . . . , xr}, S1 = {xr+1, . . . , xq}
i.e., P (S0) ≡ P (S1)

where P (S0) = p1 + p2 + · · ·+ pr and P (S1) = pr+1 + pr+2 + · · ·+ pq.

Step 3: We further partition each of the subgroups S0 and S1 into two most equiprobable subgroups S00, S01

and S10, S11 respectively.

Step 4: We continue partitioning each of the resulting subgroups into two most equiprobable subgroups till each
subgroup contain only one source symbol.

For example, let S = {x1, x2, . . . , x9}.

52

8.1. SHANNON-FANO ENCODING PROCEDURE FOR BINARY CODE: 53

S0
={ {x1

2

3
S

S00

01

{=

x
x

x1 {

={xx2

3 {
S

S

0 01

011

{=

=

x

{x

2

3

{

{

S1={
x
x
x
x
x
x {7

8

 9

4

 5

6

S

S

1

11

0=

=

{ {x
x

4

 5

{ xxx6
7 7

 9
8x {

S

S

110

1 11

S

S

100

101

=

=

=

=

{

{

{

{

x

x

4

 5

{

{

x
x

x
x

6

7

8

 9

{

{

S

S

S

S

=
11

11

111

1111

0

0

00

1 =

=

=

{

{
{

{

x

x
x

x

{6

7

8

 9

{
{

{
Therefore, the codes are

x1 → 00, x2 → 010, x3 → 011, x4 → 100, x5 → 101

x6 → 1100, x7 → 1101, x8 → 1110, x9 → 1111

Clearly no codeword is a prefix of any other codeword. So it is an instantaneous code and hence it is uniquely
decodable.

Advantages:

(1) Efficiency is nearly 100%.

(2) Expected length of the code is minimum.

(3) Entropy per digit of the encoded message is maximum.

Example 8.1.1. Construct Shannon Fanno binary code for the random variable X with the following distri-
bution.

Source symbols : x1 x2 x3 x4 x5 x6

Probability :
1

3

1

4

1

8

1

8

1

12

1

12

Calculate the expected length and the efficiency of the code.

Solution. We have

p1 + p2 =
1

3
+

1

4
=

7

12

p3 + p4 + p5 + p6 =
1

4
+

1

6
=

5

12

∴
7

12
and

5

12
are close to each other

∴ We consider the equiprobable groups as follows.

54 UNIT 8.

S1

=

=

{ {x
x

1

 2

{ xxx3

4

 6
5x {

S

S

10

11

S

S

00

01

=

=

=

=

{

{

{

{

x

x

1

 2

{

{

x
x

x
x

3

4

5

 6

{

{

S

S

S

S

=
10

1

11

111

0

0

0

1 =

=

=

{

{
{

{

x

x
x

x

{3

4

5

 6

{
{

{

S0

So the Shannon-Fano binary code will be as follows:

x1 → 00, x2 → 01, x3 → 100, x4 → 101, x5 → 110, x6 → 111

L(C) = Expected length = 2 · 1
3
+ 2 · 1

4
+ 3 · 1

8
+ 3 · 1

8
+ 3 · 1

12
+ 3 · 1

12

=
2

3
+

1

2
+

3

4
+

1

2

= 1 +
2

3
+

3

4

=
12 + 8 + 9

12
=

29

12
bits/symbol

Entropy, H(X) = −
6∑

i=1

pi log2 pi = 2.3758 bits

Efficiency, η =
H(X)

L(C) log2 2
=

2.3758

29/12
= 98.30%

■

Similar Problems:

Example 8.1.2.

Source symbols : x1 x2 x3 x4 x5 x6 x7 x8 x9

Probability : 0.49 0.14 0.14 0.07 0.07 0.04 0.02 0.02 0.01

Solution. Here p1 = 0.49 and p2 + . . .+ p9 = 0.51. Therefore, we take S0 = {x1} and

8.1. SHANNON-FANO ENCODING PROCEDURE FOR BINARY CODE: 55

S1={
x
x
x
x
x
x {4

5

 6

1

 2

3

S

S

1

11

0=

=

{ {x
x

2
 3

{ x
x
x

7

4

 6

5
x {

S

S

110

1 11

S

S

100

101

=

=

=

=

{

{

{
{

x

x

2

3

{

{

x
x

x
x

6
9

7
 8

{
{

S

S

S

S

=
11

11

111

1111

0

0

00

1=

=

=

{

{
{

{

x

x

x

x

{4

6

5

7

{
{

{

x
x
x

 7

 8

 9
x8

x
4

x5

9x

 8 x

S

S

S

S

11 1

11 11

1111

11111

0 0

0

0

=

=

=

=

{

{
{

{

x

x

x

x

6

9

7

 8

{

{

{
{

x9

So the code is

x1 → 0

x2 → 100

x3 → 101

x4 → 1100

x5 → 1110

x6 → 11010

x7 → 11110

x8 → 11111

x9 → 11011

Therefore,

L(C) = (1× 0.49) + (3× 0.14) + (3× 0.14) + (4× 0.07) + (4× 0.07)

+(5× 0.04) + (5× 0.02) + (5× 0.02) + (5× 0.01)

= 2.34 bits/symbol.

H(X) = 2.3136 bits

∴ η =
2.3136

2.34
= 38.87%

■

Example 8.1.3.

Source symbols : x1 x2 x3 x4 x5 x6 x7 x8

Probability :
1

4

1

4

1

8

1

8

1

16

1

16

1

16

1

16

Solution. Here p1 + p2 =
1
4 + 1

4 = 1
2 and p3 + p4 + p5 + p6 + p7 + p8 =

1
8 + 1

8 + 1
16 + 1

16 + 1
16 + 1

16 = 1
2 .

Therefore, we take two equiprobable groups as:

56 UNIT 8.

S1

=

=

{ {x
x

1

 2

{
x
x
x

3

4

 6
5x { S

S

10

11

S

S

00

01

=

=

=

=

{

{

{

{

x

x

1

 2

{

{

x
x

x
x

3
4

5
 6

{

{

S

S

S

S

=
10

1

11

111

0

0

0

1=

=

=

{

{
{
{

x

x
x
x

{3

4

5

 6

{
{
{

S0

x
x7
 8 x

x 7
 8

x
x 7
 8

S

S

S

S

11

11 1

111

1111

00

0

0

=

=

=

=

{
{
{
{

x
x

x

x

{
{
{
{

5

 6

 7

 8

So the code is

x1 → 00

x2 → 01

x3 → 100

x4 → 101

x5 → 1100

x6 → 1101

x7 → 1110

x8 → 1111

Therefore,

L(C) =

(
1

4
· 2
)
+

(
1

4
· 2
)
+

(
1

8
· 3
)
+

(
1

16
· 4
)
+

(
1

16
· 4
)
+

(
1

16
· 4
)
+

(
1

16
· 4
)

= 1 +
3

4
+ 1

=
11

4
= 2.75 bits/symbol.

H(X) = −
8∑

i=1

pi log pi =
11

4
= 2.75 bits

∴ Efficiency of the code = η =
H(X)

L(C) log2 2
=

2.75

2.75
= 100%

■

Unit 9

Course Structure

• Construction of Haffman binary code

• Construction of Haffman D-ary code

9.1 Construction of Haffman binary code

Let X be a random variable with the following distribution

X : x1 x2 . . . xn

Probability : p1 p2 · · · pn

Step 1: We arrange the source symbols x′is in decending order of their probabilities. Without loss of generality
we may assume that p1 ≥ p2 ≥ . . . ≥ pn. We thus have

X : x1 x2 . . . xn

Probability : p1 p2 · · · pn

Step 2: We combine the last two symbols to form a new symbol. Then we arrange the source symbols in
descending order of their probabilities. Let us suppose that

pn−1 + pn ≥ p1.

We take

x′1 = xn−1 + xn, x′2 = x1, x′3 = x2, x′4 = x3, . . . , x′n−1 = xn−2

p′1 = pn−1 + pn, p′2 = p1, p′3 = p2, . . . , p′n−1 = pn−2

This may be shown as follows:

2
3

n-2

n-1

n

...

1 px
x
x

x
x
x

p
p

p
p
p

1
2

3

n-2

n-1

n

...

p
p
p

p
p

1

2

3

n-2

n-1

...

/

/

/

/

/

57

58 UNIT 9.

Step 3: Again we combine the last two symbols to form a new symbol and proceed as in Step 2.

Step 4: The process is continued until we reach a stage where we get only one symbol.

Example 9.1.1. Construct Haffman binary code for the random variable X whose distribution is given by

X : x1 x2 x3 x4 x5

Probability : 0.25 0.25 0.2 0.15 0.15

Solution. Consider the following scheme.

x
x

x
x
x

1

2

3

4

5

0.25

0.25

0.20

0.15

0.15

0.15

0.25

0.25

0.20

0.45

0.30

0.25

0.55

0.45

1

We arrange the above scheme as a tree in reverse order from which we can write down the corresponding
Haffman binary code.

0.45

0.
55

0

1

0

10.20

0.2
5

0.25
1

0.
30

0

0.15
1

00.
15

4

5

1

2

x

x

x

x

x

3

So the Haffman binary code is

x1 → 01

x2 → 10

x3 → 11

x4 → 000

x5 → 001

■

9.2. CONSTRUCTION OF HAFFMAN D ARY CODE (D>2) 59

9.2 Construction of Haffman D ary code (D>2)

Let the random variable X has the following distribution

X : x1 x2 . . . xq

Probability : p1 p2 · · · pq

Case 1: Let (q −D) is divisible by (D − 1).

Step 1: Arrange the symbols in descending order of their probabilities.

Step 2: We consider last D symbols to a single composite symbol whose probability is equal to the sum
of the probabilities of the last D symbols.

Step 3: Repeat Step 1 and Step 2 on the resulting set of symbols until we reach a stage where we get
composite symbol only.

Step 4: Following above stage carefully we construct a tree diagram from which codes are assigned for
the symbols.

Case 2: If (q −D) is not divisible by (D − 1), then we add new dummy symbols with zero probability to make
(q∗ −D) divisible by (D − 1) where q∗ is the number of symbols after addition of dummy symbols.

Now, we proceed as in Case 1. The codes for the dummy symbols are discarded.

Example 9.2.1.

Source symbols : x1 x2 x3 x4 x5 x6 x7 x8 x9

Probability : 0.20 0.18 0.16 0.12 0.10 0.08 0.07 0.05 0.04

Construct a Haffman ternary code for X . Calculate the expected length and efficiency of the code.

Solution. Here q = 9, D = {0, 1, 2}, D = 3.

∴ q −D = 9− 3 = 6 is divisible by 2 = 3− 1 = D − 1

x
x

x

x

x

x

x

x

x

1

2

3

4

5

6

7

8

9

0.20

0.18

0.16

0.12

0.10

0.08

0.07

0.05

0.04

0.20

0.18

0.16

0.16

0.12

0.10

0.08

0.30

0.20

0.18

0.16

0.16

0.50

0.30

0.20

1

We arrange the above scheme as a tree in reverse order from which we can write down the corresponding
Haffman binary code.

60 UNIT 9.

x x

x

x
x

x

x

x
x

2 7

8

9

3

4

5

6

1

0.20 2

1
0.30

0

0.
50

0.
18

0

0.16

0.
07 0

0.05

0.04

1

2

1

20.16

0.1
2
0

1
0.10

2

0.08

So the code is

x1 → 2

x2 → 00

x3 → 02

x4 → 10

x5 → 11

x6 → 12

x7 → 010

x8 → 011

x9 → 012

Therefore,

L(C) = (1× 0.20) + (2× 0.18) + (2× 0.16) + (2× 0.12) + (2× 0.10)

+(2× 0.08) + (3× 0.07) + (3× 0.05) + (3× 0.04)

= 1.96 bits/symbol.

H(X) = −
9∑

i=1

pi log pi = 2.99388 bits

∴ Efficiency of the code = η =
H(X)

L(C) log2 3
= 0.9637 = 96.37%

■

Example 9.2.2. Construct Haffman ternary code with the following distribution

Source symbols : x1 x2 x3 x4 x5 x6

Probability :
1

3

1

4

1

8

1

8

1

12

1

12

Calculate the expected length and its efficiency.

9.2. CONSTRUCTION OF HAFFMAN D ARY CODE (D>2) 61

Solution. Here q = 6, D = {0, 1, 2}, D = 3.

∴ q −D = 6− 3 = 3 which is not divisible by 2. (9.2.1)

Therefore, we introduce a dummy source alphabet x7 with probability zero.

Now, q∗ = 7, so q∗ −D = 4 which is divisible by 2

x
x

x

x

x

x

x

1

2

3

4

5

6

7

1/3

1/4

1/8

1/8

1/12

1/12

0

1/3

1/4

1/6

1/8

1/8

5/12

1/3

1/4

1

We arrange the above scheme as a tree in reverse order from which we write down the Haffman ternary code.

x

x

x

x
x

x

x

2

1

4

3

7

6

5

1/4 2

1/3
1

0

5/
12 1/8 2

1/8

1

0

1/
6

1/2 0

1/2 1

0 2

So the code is

x1 → 1

x2 → 2

x3 → 01

x4 → 02

x5 → 000

x6 → 001

x7 → 002 (discarded).

62 UNIT 9.

Therefore,

L(C) =

(
1× 1

3

)
+

(
1× 1

4

)
+

(
2× 1

8

)
+

(
2× 1

8

)
+

(
3× 1

12

)
+

(
3× 1

12

)
=

19

12
bits/symbol.

H(X) = −
6∑

i=1

pi log pi = 1.4990 bits

∴ Efficiency of the code = η =
H(X)

L(C) log2 3
= 0.9467 = 94.67%

■

Example 9.2.3. Construct Shannon Fanno ternary code for the following distribution of the random variable
X

Source symbols : x1 x2 x3 x4 x5 x6 x7 x8 x9

Probability : 0.20 0.18 0.16 0.12 0.10 0.08 0.07 0.05 0.04

Hence calculate the expected length and efficiency of the code.

Solution: Here we see that

p1 + p2 = 0.38

p3 + p4 + p5 = 0.38

p6 + p7 + p8 + p9 = 0.24

So we take the three equiprobable groups as

S1

=

=

{ {x
x

1

 2

{ xxx3

4

5 {
S10

S

S

00

01

=

=

=

{

{

x

x

1

 2

{

{

{
{

x

x

{3

4 {

S0

S11

S1 2

=

={x5 {

S ={ {2

x
x
x
x

6

7

8

9

S

S

S

 20

 21

 22

=

=

=

{
{
{

x

x
x
x

6

7

8

9 {
{
{

S

S

 220

 221

=

=

{

{

8

9

x

x

{

{

9.2. CONSTRUCTION OF HAFFMAN D ARY CODE (D>2) 63

Therefore, the Shannon Fanno ternary codes are obtained as

x1 → 00

x2 → 01

x3 → 10

x4 → 11

x5 → 12

x6 → 20

x7 → 21

x8 → 220

x9 → 221

Therefore,

L(C) = (2× 0.20) + (2× 0.18) + (2× 0.16) + (2× 0.12) + (2× 0.10)

+(2× 0.08) + (2× 0.07) + (3× 0.05) + (3× 0.04)

= 2.09 bits/symbol.

H(X) = −
9∑

i=1

pi log pi = 2.99388 bits

∴ Efficiency of the code = η =
H(X)

L(C) log2 3
= 0.9038 = 90.38%

Unit 10

Course Structure

• Error correcting codes

• Construction of linear codes

• Standard form of parity check matrix

• Hamming code, Cyclic code

10.1 Error correcting codes

Let Fq be a finite field with q elements and let n(> 1) be a given positive integer. We denote by Vn(Fq), the
set of all n-tuples x = (x1, x2, . . . , xn) with xi ∈ Fq, i = 1, 2, . . . , n. For any x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) ∈ Vn(Fq) and λ ∈ Fq, define

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn)

λx = (λx1, λx2, . . . , λxn)

Then
x+ y, λx ∈ Vn(Fq).

It is easy to see that Vn(Fq) is a vector space over the field Fq.

Theorem 10.1.1. For any x, y ∈ Vn(Fq), if we define d(x, y) = number of i′s with xi ̸= yi, then d is a metric
on Vn(Fq).

Proof. From definition it is clear that for x, y ∈ Vn(Fq)

(i) d(x, y) ≥ 0 and d(x, y) = 0 iff x = y,

(ii) d(x, y) = d(y, x).

Now, let x, y, z ∈ Vn(Fq). Then we show that

d(x, y) ≤ d(x, z) + d(z, y) (10.1.1)

64

10.1. ERROR CORRECTING CODES 65

If x = y, then d(x, y) = 0 and so (10.1.1) holds.
If x = z, then d(x, z) = 0 and d(z, y) = d(x, y).
Hence (10.1.1) holds.
Similarly if y = z, then (10.1.1) also holds.
Suppose x ̸= y, x ̸= z, z ̸= y.
Let E = {i : xi ̸= yi}, A = {i : xi ̸= zi} and B = {i : yi ̸= zi}.
|E| denote the number of elements in E. Then d(x, y) = |E|, d(x, z) = |A|, d(y, z) = |B|.
Let i ∈ E. If xi ̸= zi, then i ∈ A also. Suppose that xi = zi. Since xi ̸= yi, we have zi ̸= yi. So i ∈ B.

∴ i ∈ A ∪B.

This gives E ⊂ A ∪B. Therefore, |E| ≤ |A|+ |B|.

∴ d(x, y) ≤ d(x, z) + d(z, y)

Thus d is a metric on Vn(Fq).

Definition 10.1.2. q-ary code of length n: A non empty subset C of Vn(Fq) is called a q-ary code of length
n and members of C are called codeword. If q = 2, the corresponding code is called binary code and so on.

Definition 10.1.3. Weight of a codeword: An element x in Vn(Fq) is a codeword. The weight of the code-
word x, denoted by w(x) and is defined by

w(x) = number of i′s with xi ̸= 0.

e.g., x = 1 2 0 1 0 0 . . . 0. Then, w(x) = 3.

Definition 10.1.4. Linear code: A linear subspace C of Vn(Fq) is called a linear code of length l over the
field Fq and the dimension k of the subspace C is called the dimension of the code C. It is also called an
(n, k) linear code over the field Fq.

Definition 10.1.5. Minimum distance of the code: Let C be a code in Vn(Fq). The minimum distance δ(C)
of the code C is defined by

δ(C) = min{d(x, y) : x, y ∈ C and x ̸= y}

Definition 10.1.6. Generator matrix: Let C be an (n, k) linear code over the field Fq with q elements. A
k × n matrix G with entries from the field Fq is said to be the generator matrix of code C if the row space
of the matrix G is the same as the subspace C. We also say that the matrix G generates the code C. Since
the dimension of C is k, the dimension of the rowspace of G is k which implies that the row vectors of G are
linearly independent and so they form a basis of C.

Definition 10.1.7. Parity check matrix: Let C be an (n, k) linear code over the field Fq with q elements. An
(n− k)× n matrix H with entries from the field Fq is called a parity check matrix of code C iff Hx = 0 for
all x ∈ C.

The matrix H also generates an (n, n − k) linear code over Fq which is denoted by C⊥ and is called the
dual space of C.

∴ dim(C) + dim(C⊥) = n and rank(H) = n− k.

66 UNIT 10.

10.2 Construction of linear codes

• By using generator matrix: Let G be a k × n (k < n) generator matrix with entries from Fq with q
elements and rank(G) = k.

Let C denote the row space of the matrix G. Then C is and (n, k) linear code denoted by α1α2 . . . αk, the
row vectors of G.

Let a = (a1 a2 . . . ak) ∈ Vk(Fq). Then

u = aG = a1α1 + a2α2 + . . .+ akαk ∈ C

Thus every u in C is of the form u = aG where a ∈ Vk(Fq).

Example 10.2.1. Find the codewords determined by the binary generator matrix

G =

1 0 0 1 1
0 1 0 0 1
0 0 1 1 1



Solution. G is a binary generation matrix with 5 columns. Also, it is clear that rank(G)=3. The linear code C
generated by G is given by

C = {x : x = aG and a ∈ V3(F2)}

The vector a = (a1 a2 a3) may be considered in 23 = 8 ways , namely, (0 0 0), (0 0 1), (0 1 0),
(1 0 0), (0 1 1), (1 0 1), (1 1 0), (1 1 1).

∴
(
0 0 0

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
0 0 0 0 0

)

10.2. CONSTRUCTION OF LINEAR CODES 67

(
0 0 1

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
0 0 1 1 1

)
(
0 1 0

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
0 1 0 0 1

)
(
1 0 0

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
1 0 0 1 1

)
(
0 1 1

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
0 1 1 1 0

)
[∵ 1 + 1 = 0]

(
1 0 1

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
1 0 1 0 0

)
[∵ 1 + 1 = 0]

(
1 1 0

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
1 1 0 1 0

)
[∵ 1 + 1 = 0]

(
1 1 1

)1 0 0 1 1
0 1 0 0 1
0 0 1 1 1

 =
(
1 1 1 0 1

)
[∵ 1 + 1 = 0; 1 + 1 + 1 = 0 + 1 = 1]

■

• By using Parity check matrix: Let H be an r×n(r < n) parity check matrix with entries from Fq with
q elements and rank(H) = r. Let

C = {x : x ∈ Vn(Fq) and Hx = 0}

Take x, y ∈ C and any α ∈ Fq, then we have

Hx = 0, Hy = 0.

H(x+ y) = H(x) +H(y) = 0

and H(αx) = αH(x) = 0.

Therefore, C is a linear subspace of Vn(Fq) and so a linear code over the field Fq.

Clearly H is a parity check matrix for the code C. The dimension of code C is n− r.

Example 10.2.2. Find a codeword determined by the binary parity check matrix

H =

(
1 0 1 0
0 1 1 1

)

Solution. Here H is a binary parity check matrix with 4 columns and rank(H) = 2. Therefore, the linear

68 UNIT 10.

code C determined by the parity check matrix H consists of binary codewords (x1 x2 x3 x4) satisfies

(
1 0 1 0
0 1 1 1

)
x1
x2
x3
x4

 = 0

⇒ x1 + x3 = 0 and x2 + x3 + x4 = 0

⇒ x1 = x3 and x2 = x3 + x4 [∵ 2 · 1 = 0; 1 + 1 = 0; − 1 = 1]

If the values of x3 and x4 are assigned then x1 and x2 are determined. There are four ways of choosing x3
and x4 i.e., 00, 01, 10, 11, leading to the codewords 0000, 0101, 1110, 1011. ■

The following is a similar problem.

Example 10.2.3. Find the codewords determined by the P.C.M

H =

1 0 0 0 1
0 1 0 1 1
0 0 1 1 1


10.3 Standard form of parity check matrix:

The standard r × n parity check matrix H is given by

H =


1 0 . . . 0 b11 b12 . . . b1n−r

0 1 . . . 0 b21 b22 . . . b2n−r

0 0 . . . 0 b31 b32 . . . b3n−r
...

...
...

...
...

...
...

...
0 0 . . . 1 br1 br2 . . . brn−r


r×n

with entries from the field Fq with q elements.

x1 = b11xr+1 + b12xr+2 + . . .+ b1n−rxn

x2 = b21xr+1 + b22xr+2 + . . .+ b2n−rxn

.

xr = br1xr+1 + br2xr+2 + . . .+ brn−rxn

These equations determine x1, x2, . . . , xr when the values of xr+1, xr+2, . . . , xn are assigned, since there are
qn−r ways of choosing the values to obtain the linear code C of dimension n− r.

10.4 Hamming Code:

Let r be a given positive integer. We determine a binary matrix H with r rows and with maximum number
of columns such that no column of H consist entirely of 0′s and no two columns of H are same. Then linear
code C determined by the parity check matrix H , we correct one error. This code C is called a Hamming
code. Since each column of H has r entries and each entry is either 0 or 1, then the maximum number of
different column is n = 2r − 1. (The column consisting of entirely 0′s being excluded.)

Exercise 10.4.1. Determine the Hamming code by the following P.C.M

H =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1



10.5. CYCLIC CODE 69

10.5 Cyclic Code

Here we shall denote the word “a" of length n by a0a1a2 . . . an−1. The word â = an−1a0a1a2 . . . an−2

is called the 1st cyclic shift of the word a. A code C in Vn(Fq) is said to be cyclic if it is linear and
a ∈ C ⇒ â ∈ C.

Let C be a cyclic code in Vn(Fq) and a ∈ C. Then the words are obtained from a by n number of cyclic
shifts. Any number of cyclic shifts such as

aiai+1 · · · an−1a0a1 · · · ai−1

belong to C.

Cyclic codes are useful for two reasons; from the practical point of view, it is possible to implement by
simple devices known as shift resister. On the other hand, cyclic code can be constructed and investigated by
means of algebraic theory of rings and polynomials.

Construction of a cyclic code

Let C be a cyclic code in Vn(Fq) generated by g(x). Then g(x) is a divisor of xn − 1. So we have

xn − 1 = h(x)g(x) (10.5.1)

Let

h(x) = h0 + h1x+ h2x
2 + . . .+ hkx

k

g(x) = g0 + g1x+ g2x
2 + . . . gn−k−1x

n−k−1 + gn−kx
n−k

where gn−k = 1.

It is easy to see from (10.5.1) that hk = 1 and h0g0 = −1, which gives that h0 ̸= 0, g0 ̸= 0. The polynomial
g(x) corresponds to the codeword

g = g0 g1 g2 · · · gn−k 0 0 · · · 0 in Vn(Fq)

The polynomial xig(x) (1 ≤ i ≤ k − 1) corresponds to the codeword

g(i) = 0 0 · · · g0 g1 · · · gn−k 0 0 · · · 0

There are i zeros at the beginning and k − 1 − i zeros at the end. We denote by h, the codeword whose 1st
k + 1 bits are hkhk−1 · · ·h1h0 followed by n− k − 1 zeros.

∴ h = hk hk−1 · · · h1 h0 0 0 · · · 0

Let H denote the (n− k)×n matrix whose rows are h, h(1), h(2), . . . , h(n−k+1), where h(i) is the i-th cyclic
shift of the codeword h. Hence

H =


hk hk−1 · · · h1 h0 0 0 · · · 0
0 hk hk−1 · · · h1 h0 0 · · · 0
· ·
0 0 · · · 0 hk hk−1 · · · h1 h0



70 UNIT 10.

Example 10.5.1. Determine the binary parity check matrix for the cyclic code C =< g(x) > of length 7
where g(x) = 1 + x2 + x3 and obtain the code C.

Solution. The factorization of x7 − 1 into irreducible polynomials, i.e.,

x7 − 1 = (1 + x)(1 + x+ x3)(1 + x2 + x3)

= h(x)g(x) [∵ In a binary code, -1 = 1] (10.5.2)

∴ h(x) = (1 + x)(1 + x+ x3)

= (1 + x2 + x3 + x4) [∵ 1 + 1 = 0]

∴ h0 = 1, h1 = 0, h2 = 1, h3 = 1, h4 = 1.

H =

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1


No column of H consist entirely 0′s and no two columns are exactly same. So the code determined by H is a
Hamming code of length 7. ■

Unit 11

Course Structure

• Golay code, BCH codes, Reed-Muller code, Perfect code, codes and design.

11.1 Golay Code

Definition 11.1.1. (Binary) Code: A (binary) [n, k, d] code is a k-dimensional subspace C of Fn
2 with the

property that any two distinct points in C have (Hamming) distance ≥ d (i.e. any two distinct points differ in
at least d coordinates). We call elements of C codewords.

Note 11.1.2. If u, v ∈ C have distance d then 0, v−u have distance d or equivalently v−u has weight d (i.e.
has d coordinates with value 1). Thus, the minimum distance between two distinct codewords is equal to the
minimum weight of a nonzero codeword.

Example 11.1.3. Let V be the points of the Fano plane and let C ⊂ Fn
2 consist of the vectors 0, 1, the

incidence vector of every line, and the complement of the incidence vector of every line. It is straightforward
to check that C is a subspace so this is a [7, 4, 3] code. This code can be generated by the rows of the following
matrix. 

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1


Error Correcting: If C has a distance d ≥ 2e + 1 then the Hamming balls of radius e around each

codeword are disjoint, so if a codeword was transmitted over a noisy channel causing at most e bitwise errors
to occur, these could be reliably corrected.

Definition 11.1.4. We say that an an [n, k, 2e + 1] code is perfect if the Hamming balls of radius e partition
Fn
2 . In this case we must have

2n = 2k
e∑

i=0

(
n

i

)
.

Note that the code in the example above is perfect as the Hamming ball of radius 1 around each point
contains 1 + 7 = 23 points and the code is a 4-dimensional subspace of F7

2.

71

72 UNIT 11.

11.1.1 The Golay Code

Let N be the generator matrix and define the matrix P as follows.

P =


0 1 . . . 1
1
... N
1

 (11.1.1)

We define the Golay Code, G24, to be the code generated by the rows of the matrix [IP].

Observation 11.1.4.1. G24 is a [24, 12, 8]-code.

Proof. It is immediate from the properties of N that any two rows of the generator matrix have dot product 0,
so GT

24 = G24. Every row of the generator matrix has weight a multiple of 4 and it then follows from an easy
inductive argument that every codeword of G24 has weight a multiple of 4. The sum of two rows of N has
weight 6 and the sum of three or four rows of N is nonzero. It follows from this that G24 has no codeword of
weight 4, so it is a [24, 12, 8] code.

Definition 11.1.5. M24: We define the Matthieu Group, M24, to be the subgroup of permutations of the 24
coordinates of G24 which map codewords to codewords.

Theorem 11.1.6. M24 acts 5-transitively on the coordinates of G24.

Theorem 11.1.7. Let G act faithfully and 3-transitively on the set Ω. Then one of the following holds:

1. G contains all permutations of Ω or all even permutations of Ω;

2. This action is isomorphic to AGL(n, 2) acting on AG(n, 2)

3. |Ω| = q + 1 and this action contains the action of PSL(2, q) on PG(1, q)

4. This action is the action of M12 on a set of size 12, or the actions obtained by fixing one or two points
of this set.

5. This action is the action of M24 on a set of size 24, or the actions obtained by fixing one or two points
of this set.

Note 11.1.8. The codewords of weight 8 form a 5− (24, 8, 1) design.

Definition 11.1.9. G23: We let G23 be the code obtained from G24 by deleting one coordinate. Then G23 is
a [23, 12, 7] code and since every codeword of G24 has even weight, we can recover G24 from G23 by adding
a new bit to each codeword so that it has even weight. Note that the sum of the sizes of the Hamming balls of
radius 3 around codewords of G23 is

212
3∑

i=0

= 212(1 + 23 + 253 + 1771) = 212 · 211 = 223

so G23 is a perfect code.

Theorem 11.1.10. The only perfect [n, k, 2e+ 1] code with k > 1 and e > 2 is G23.

11.1. GOLAY CODE 73

Alternate Constructions of the Golay Code:

1. We construct G24 by taking M to be the 12 × 12 matrix which is the complement of the adjacency
matrix of an icosahedron and then taking [IM] as our generator matrix.

2. We can construct G24 by the following procedure: In the space F24
2 we order the words lexicographi-

cally, and at each step choose the smallest word of distance ≥ 8 to any already chosen word.

3. We can construct G23 by taking the rowspace of the (11-dimensional) matrix M = {mij}i,j∈F23 given
by

mij =

{
1 if i− j ∈ F23

0 otherwise
.

There are many ways of making the Golay code(s). We’ll describe just one. Adding an overall parity check to
the perfect code gives one of length 24, in which the minimal weight is 8 instead of 7. This is the code I shall
construct.

Put the 24 coordinates in a 6× 4 array, with the 6 columns labelled by the coordinates 0, 1, 2, 3, 4, 5 of the
hexacode, and the 4 columns labelled by the four elements of F4. Now the 24 coordinates lie in F2 and satisfy
12 independent linear conditions, as follows:

• The parity of all the columns equals the parity of the top row. (6 conditions)

• The sums over each column give a hexacode word. Equivalently, these sums give a word which is
perpendicular to all hexacode words. Equivalently, perpendicular to six hexacode words forming an
F2-basis. (6 conditions)

In effect, the first column is arbitrary (16 choices), then the second and third columns have to have the same
parity (8×8 choices), at which point the hexacode word is uniquely determined. Then the fourth and fifth
columns are determined up to complementation (2 × 2 choices) and the last column is determined by the
parity condition. In any case, the Golay code has 212 words.

It is linear because it is defined by linear conditions. It is also self-dual: this follows easily from the fact
that the hexacode is self-dual. Or if you doubt this, check it on a basis instead:

• Take six vectors of shape one column plus (i.e. symmetric difference) the top row.

• Take six vectors of shape the top row plus a hexacode word (i.e. 6 such words forming an F2-basis of
the hexacode).

The weight distribution of the Golay code is 01875912257616759241. To prove this, first observe that (124) is
in the code. We can find the following words of weight 8:

• Two columns: 15 of these;

• One column plus a hexacode word: 6× 64 = 384 of these;

• The top row plus a hexacode word of weight 4, plus an even number of these four columns: 45×8 = 360
of these.

The words of weight 16 are the complements of these, and we find the following words of weight 12:

• A hexacode word plus 3 columns: 64× 20 = 1280 of these;

• The top row plus a hexacode word of weight 8, plus an even number of columns: 18 × 32 = 576 of
these;

74 UNIT 11.

• The top row plus a hexacode word of weight 4, plus an even number of columns including one of the
other two columns: 45× 8× 2 = 720 of these.

Since we have already found 212 codewords, these are all.
The unique linear perfect 3-error-correcting code is obtained by deleting one coordinate from this. It

still has dimension 12 of course, and weight distribution 01725385061112881212881550616253231.
Round each codeword we count

• 1 codeword

• 23 vectors at distance 1

• 23.22/2 = 253 at distance 2

• 23.22.21/3.2.1 = 1771 at distance 3

making 2048 = 211 altogether, thereby neatly accounting for all 212× 211 = 223 vectors in the space.
The extended code has the following numbers of vectors at various distances:

• 1 codeword

• 24 at distance 1

• 24.23/2 = 276 at distance 2

• 24.23.22/3.2.1 = 2024 at distance 3

• 24.23.22.21/4.3.2 = 10626 at distance 4

In particular, 2325 cosets of the code contain representatives of weight at most 3, so the remaining 1771 each
have 6 representatives of weight 4, since 6× 1771 = 10626.

Sextets are the corresponding partitions of the 24 points into six 4s. For example the six columns of our
diagram (Curtis’s MOG) form such a sextet, since the sum of two columns lies in the code.

The stabiliser of a sextet permutes the six columns as S6: an A6 from the automorphism group of the
hexacode, together with swapping the last two columns and simultaneously applying the field automorphism.

Fixing all the columns setwise, we still have the additive symmetry of the hexacode. Therefore the full
stabiliser has shape 26 : 3S6.

The full automorphism group of the extended Golay code is transitive on the sextets (needs to be proved!),
and so has order 244823040. It is the simple Mathieu group M24.

11.2 BCH Code

11.2.1 Introduction

Multiple error correcting polynomial codes were invented by mathematicians Bose, Ray-Chaudhuri, and Hoc-
quenghem in the 1950’s. These codes are called BCH codes in their honor. Although BCH codes can be
defined over any field, we will again, for simplicity, restrict to the binary field and study binary BCH codes.

11.2. BCH CODE 75

11.2.2 The BCH Code

Denote messages, generators (encoding polynomials), codewords, and received mes- sages by m(x), p(x), c(x),
respectively. These are represented as sequences corresponding to the coefficients of a polynomial, where we
take the convention of writing the coefficients from lowest to highest degree.

Recall from the last section that polynomial codes are obtained by multiplying message polynomials by
encoding polynomials. Thus,

c(x) = m(x)p(x) =

n∑
i=1

cix
i (11.2.1)

which is also represented by c = (c1, c2, . . . , cn) for ci ∈ GF (2).
A binary BCH code is defined as follows.
Let p(x) be a primitive polynomial of degree r with coefficients in the binary field. If c(x) is a non-

zero polynomial such that c(x) = c(x3) = c(x5) = . . . = c(x2t−1) = 0 (mod p(x)) for all t such that
1 ≤ (2t− 1) ≤ 2r − 1, then c(x) is a t-error correcting code of length n = 2r − 1.

A received sequence can have at most t errors to guarantee correct decoding. Let ei, 1 ≤ ei ≤ n and
1 ≤ i ≤ t, represent the location of the ith bit in error. Then the error monomials are xei , the error polynomial

e(x) =

k∑
i=1

xei is their sum. The received polynomial is then

r(x) = c(x) + e(x). (11.2.2)

Suppose we have a t-error correcting BCH code. Then the remainder of the received ploynomial r(x) (mod
p(x)) is equal to the sum of the remainders of the error monomials. Furthermore, if we evaluate the received
polynomial at a higher power of x and then divide by p(x), then this is equal to the error polynomial evaluated
at the higher power and taking its remainder. That is, Rem

[
r(xj)

]
=Rem

[
e(xj)

]
for 1 ≤ j ≤ 2t− 1. Recall

that if p(x) is primitive, there is a bijective map from xei →Rem
[
e(xj)

]
for all ei, 1 ≤ ei ≤ n. Thus, if

the error monomial or the remainder value after dividing the error monomial xei by p(x) is known, then the
position of the error is known. For multiple errors, we only have the remainder of the sums of error monomials.
To determine each bit position in error, we need to extract each monomial from this information.

In the following section, we show

(i) how to find the encoding polynomial and

(ii) how to determine the bit positions in error from the remainders of the received polynomial evaluated at
higher powers.

11.2.3 The Generator Polynomial

For a t-error correcting code, the generator polynomial Q(x) of standard BCH codes has the form

Q(x) = p(x)p3(x)p5(x) . . . p2t−1(x) (11.2.3)

where p(x) is a primitive polynomial and all the polynomials p3(x3), p5(x5), . . . , p2t−1(x
2t−1) must be divis-

ible by p(x), i.e.,
p3(x

3) = p5(x
5) . . . p2t−1(x

2t−1) = 0 (modp(x)). (11.2.4)

We have shown that this form is sufficient and demonstrated how to find it in the previous lecture notes on
polynomial codes. We show it here again with an example. For primitive p(x) = 1 + x + x4, to find p3(x),
note that x6 + x9 + x12 = 1+ x3 (mod p(x)). Then 1+ x3 + x6 + x9 + x12 = 0 (mod p(x)). Let y = x3 and
let p3(y) = 1 + y + y2 + y3 + y4. It follows that p3(x3) = 0 (mod p(x)).

76 UNIT 11.

Thus Q(x) = p(x)p3(x) = (1 + x+ x4)((1 + x+ x2 + x3 + x4) is a generator polynomial for a 2-error
correcting code. Using a similar procedure, we find p5(x) = 1+x+x2. Therefore, Q(x) = p(x)p3(x)p5(x) =
(1 + x+ x4)((1 + x+ x2 + x3 + x4)(1 + x+ x2) is the generator polynomial for a 3-error correcting BCH
code.

11.2.4 The Error Locator Polynomial and the Elementary Symmetric Functions

Define ti =

t∑
j=1

xej to be the i-th power sums of the error monomials. Since t2 = t21 in the binary field, the

even ti provide no new information. The ti’s are called the power sum symmetric functions, and we will use
these to find the bit error locations.

Define the error locator polynomial E(y) of degree t such that it is equal to zero when evaluated at the error
monomials and nonzero otherwise.

E(y) = (y − xe1) (y − xe2) . . . (y − xek)

= yk + s1y
k−1 + s2y

k−2 + . . .+ sk−1y + sk

= 0. (11.2.5)

Then, from the fundamental theorem of algebra, for a t-error correcting code, all the roots of the error locator
polynomial are the error monomials, xej , 1 ≤ ei ≤ n and 1 ≤ i ≤ t. We need to find a relationship between
the coefficients, sj’s of the error locator polynomial and the odd power sum symmetric functions, tj’s.

The k-th elementary symmetric function of d elements is defined as the sum of the products of k different
elements from among the d elements, combined in all possible ways. For example, the second elementary
function of a, b, c, d is ab+ ac+ ad+ bc+ bd+ cd.

There is a linear relationship between the elementary symmetric functions and the odd power sums, ti, of
the error monomials. The coefficients, sj , 1 ≤ j ≤ k of the error locator polynomial are related to the ti’s in
the following for k odd and s0 = t0 = 1,

k∑
i=1

sitk−1 = sk + sk−1t1 + . . .+ s1tk−1 + tk = 0. (11.2.6)

To see this for a k-error correcting code, note that the error locator polynomial in equation (11.2.5) evaluated
at each error monomial y = xei must be satisfied. That is, for each j, 1 ≤ j ≤ t

xtej + s1e
(t−1)ej + . . .+ st−1x

ej + st = 0. (11.2.7)

Sum equation (11.2.5) over all the error monomials. Then, t is the coefficient of st and tt−j is the coefficient
of sj , except that the coefficient of st is t. For any t′ > t, multiply equation (11.2.6) by yt

′−t, and follow
the same proof – evaluate at each error monomial and sum. The relationship between si and ti in equation
(11.2.6) follows.

For the case of a two error correcting code over a binary field, the standard encoding polynomial is Q(x) =
p(x)p3(x). The error locator polynomial will have degree 2, and its coefficients determined from equation
(11.2.6) are given by s1 = t1 and s2 = t21 +

t3
t1

.

11.2.5 Example: 3 Error Correcting BCH Code

The encoding polynomial is of the form Q(x) = p(x)p3(x)p5(x). Suppose we use p(x) = 1 + x + x4, then
Q(x) = (1+x+x4)((1+x+x2+x3+x4)(1+x+x2). Suppose the received sequence is 101000110110010,

11.2. BCH CODE 77

then

r(x) = 1 + x2 + x6 + x7 + x9 + x10 + x13 (11.2.8)

r(x3) = 1 + x6 + x18 + x21 + x27 + x30 + x39

= 1 + x6 + x3 + x6 + x12 + x0 + x9

= x13

r(x5) = 1 + x2 + x6 + x7 + x9 + x10 + x13

= 1 + x10 + x30 + x35 + x45 + x50 + x65

= 0

We divide by p(x) = 1 + x + x4 for all 3 received sequence above. Note that r(x5) = 0 means there are
only 2 errors in our received sequence. Since r(x3) = x13, it is already a monomial. We only need to add the
remainders of the monomials of r(x). 1000 + 0010 + 0011 + 1101 + 0101 + 1110 + 1011 = 0100 means
r(x) = x (mod p(x)).

Rem[r(x)] = t1 = x (11.2.9)

Rem[r(x3)] = t3 = x13 (11.2.10)

Rem[r(x5)] = t5 = 0.

From the s− t relations in equation (11.2.6), we have

s1 + t1 = 0 (11.2.11)

s3 + s2t1 + s1t2 + t3 = 0 (11.2.12)

s3t2 + s2t3 + s1t4 + t5 = 0 (11.2.13)

Substituting equations (11.2.9) into equations (??) and solving, we get we get s1 = x, s2 = x7 and s3 = 0.
From the elementary symmetric functions,

s1 = xe1 + xe2 + xe3 = x (11.2.14)

s2 = xe1xe2 + xe2xe3 + xe3xe1 = xe1+e2 + xe2+e3 + xe3+e1 = x7 (11.2.15)

s3 = xe1xe2xe3 = xe1+e2+e3 = 0 (11.2.16)

the error locator polynomial becomes

E(y) = (y − xe1) (y − xe2) (y − xe3)

= y3 + s1y
2 + s2y + s3

= y3 + xy2 + x7y

= y2 + xy + x7 = 0.

We now substitute in all the monomials y = xj , 0 ≤ j ≤ 2r to see which monomials are solutions to the
error locator polynomial. We find that x2 and x5 are roots. The correct sequence is 100001110110010 and
the message is 11010.

Unit 12

Course Structure

• Reed-Muller Codes

12.1 Reed-Muller Codes

12.1.1 Introduction to Reed-Muller Codes

Reed-Muller codes were invented in 1954 by the American mathematician David E. Muller and so RM codes
are one of the oldest families of codes. The first efficient decoding algorithm was created by Irving S. Reed.

RM codes are linear block codes and initially they belonged to the class of binary codes. It is this traditional
form of RM codes that we will study in this chapter. Characteristic for RM codes are their advantageous
properties for coding and decoding. They are useful in a wide range of functions, especially in wireless and
deep-space communication.

Definition 12.1.1. The rth order Reed-Muller Code R(r,m) has the positive integers r and m for which
0 ≤ r ≤ m. The length is n = 2m and the minimum distance is d = 2m−r. The RM code consists of the
vectors f where f(v1, v2, . . . , vm). This function is a Boolean function since it only includes the values 0 and
1. It forms a polynomial of the maximum degree r. An example of this is the first-order RM code of length
16 which is a polynomial of the first degree: a01 + a1v1 + a2v2 + a3v3 + a4v4, ai = 0 or 1.

12.1.2 First-Order RM Codes

First-order RM codes have the advantage of working over particularly noisy channels. They can correct many
errors and is notably easy to encode and decode. Consequently, first-order RM codes have been found useful
in deep-space data transmission where they, for example, have been applied for transmitting pictures from
Mars.

Definition 12.1.2. The 1th order Reed-Muller code R(1,m) has the positive integer m and r = 1. It can
be described as a

[
2m,m+ 1, 2m−1

]
code and it is defined for all integers m ≥ 1. Due to the low rate of

first-order RM codes, they have the ability to correct numerous errors. For this reason, they have proved to be
suitable for especially noisy channels.

78

12.1. REED-MULLER CODES 79

In the case of R(1, 1) we find that the codewords are (00, 01, 10, 11). If m > 1 then R(1,m) = {(u, u), (u, u+
1) : u ∈ R(1,m−1)}. This is an example of the |u|u+v| construction which declares the method of forming
a new code consisting of two previous codes. We may therefore have a code C1[n,M1, d1] and another code
C2[n,M2, d2]. As we can see these codes are of the same length. Together they form a new code C3 which
consists of all the vectors |u|u + v| where u ∈ C1 and v ∈ C2. As a result, the new code is of double length
2n.

Theorem 12.1.3. R(1,m) is a [2m,m + 1, 2m−1] code where m > 0. The code has minimum distance
(Hamming weight) 2m−1 since every codeword except 0 and 1 has weight 2m−1.

Proof. We will prove this theorem by induction.
Base case: We have previously described that it is obvious that R(1, 1) is a [2, 2, 1] code. So the theorem

holds for R(1, 1).
Inductive step: We assume that R(1,m− 1) is a [2m−1,m, 2m−2] code. R(1,m) can therefore be created

using the |u|u+ v| construction. Let C1 = R(1,m− 1) and C2 = {0, 1} = R(0,m− 1).
Consequently, R(1,m) is a [2(2m−1),m + 1, 2(2m−2)] code, in other words, a [2m,m + 1, 2m−1] code.

Furthermore, we assumed that R(1,m− 1) had weight 2m−2. Since a codeword in R(1,m) is constructed as
(u, u+ v), (u, u) has weight 2(2m−2) = 2m−1. Additionally, we study the other codewords (u, u+ 1):

If u = 0, then u+1 is 1. We see that half of each codeword consists of 1’s. Therefore, wt(u, u+1) = 2m−1,
If u = 1, then u+ 1 = 0. Again, half of each codeword is 1’s and wt(u, u+ 1) = 2m−1.
For every other u in R(1,m− 1) : wt(u) = 2m−2, which means that half of each vector u consists of 1’s.

The same applies to u+ 1 and so wt(u, u+ 1) = 2(2m−2) = 2m−1.

Theorem 12.1.4. R(r + 1,m+ 1) = {|u|u+ v| : u ∈ R(r + 1,m), v ∈ R(r,m)}.

12.1.3 Encoding

In this part of the unit, we will describe some of the methods for encoding first-order RM codes. In the
following examples, the reader will find first-order RM codes of length 8 and 16. When it comes to the first-
order RM code of length 16 a generator matrix, afterwards included in the first encoding method, is presented.
Later, we will describe the clock circuit which makes encoding of first-order RM codes exceedingly simple.

Example 12.1.5. R(1, 3) According to the previous definition the first order RM code of length 8 is a poly-
nomial of the first degree:

a01 + a1v1 + a2v2 + a3v3, ai = 0 or 1.

In this example, n = 8 = 2m. Hence the positive integer m = 3 and R(1, 3).

R(1, 3) = {(u, u), (u, u+ 1) : u ∈ R(1, 2)},

and so, the 8× 2 = 16 codewords are given in figure 12.1
The weight of every codeword except 0 and 1 is 2m−1. In this case the weight is 22 = 4. Furthermore,

k = 1 +

(
m

1

)
+

(
m

2

)
+ . . .+

(
m

r

)
where k is the dimension of the code. When the length of the first-order RM code is 8 then

k = 1 +

(
3

1

)
= 4.

As a result, the dimension of the code is 4 which also indicates the number of basic vectors.

80 UNIT 12.

Figure 12.1

Example 12.1.6. The first order RM code of length 16 is a polynomial of the first degree:

a01 + a1v1 + a2v2 + a3v3 + a4v4, ai = 0 or 1.

n = 16 = 24 and R(1, 4). The weight of every codeword, except 0 and 1, is 24−1 = 8,

k = 1 +

(
4

1

)
= 5.

The generator matrix for first-order RM codes of length 16 consists of 5 basic vectors. Basic vectors are
always linearly independent. The fifth dimension signifies the first five rows in the generator matrix for all
R(r, 4) up to the 4th order RM code. The generator matrix for first-order RM codes of length 16 consists of
the five basic vectors (figure 12.2).

Figure 12.2: Basic vectors for first-order RM codes of length 16

We will now apply the generator matrix. R(1, 4) 4) in order to show the reader how encoding using a
generator matrix works. We use the generator matrix, G, consisting of the five basic vectors listed above, and
the message symbols:

a = a0a4a3a2a1, ai = 0 or 1.

12.1. REED-MULLER CODES 81

Together they are encoded into the codeword x:

x = aG =


a0
a4
a3
a2
a1



1111111111111111
0000000011111111
0000111100001111
0011001100110011
0101010101010101


= a01 + a4v4 + a3v3 + a2v2 + a1v1

(= x0x1 . . . x15, for example).

Encoding using a generator matrix can be applied for all RM codes, R(r,m), 0 ≤ r ≤ m. The minimum

distance, d = 2m−r, and the code can correct
1

2
(d− 1) errors. And so, R(1, 4) can correct 3 errors while

R(2, 4) is a single-error correcting code. The Reed Decoding Algorithm can be used to decode these RM
codes.

In general, RM codes have proved easy to encode and decode. Nevertheless, when it comes to first-order
RM codes, encoding becomes exceedingly simple. A circuit can handle the process of encoding a message
into a codeword. An example of an encoder for R(1, 4) is presented here:

Figure 12.3: Encoder (Clock circuit) for R(1, 4)

The procedure is similar to encoding using generator matrix. For R(1, 4), an [16, 5, 8] code, a message
including 5 message symbols is encoded into the codeword (x0x1 . . . x15). The generator matrix, consisting
of 5 basic vectors, and the message (aG) equals the codeword (x). The clock circuit in 12.3 accomplishes this
by counting from 0 to 15 through

t1t2t3t4 = 0000, 0001, 0010, 0011, 0100, 0101, . . . , 1111, 0000, 0001, . . .

As a result, the circuit forms u01 + t1u1 + t2u2 + t3u3 + t4u4 which is the codeword (x0x1 . . . x15).

12.1.4 Decoding

Reed-Muller codes have the advantage of being easier to decode than many other codes. RM codes belong to
the class of geometrical codes and can therefore be decoded by majority logic. Consequently, the following
examples of decoding methods and algorithms are based on majority logic decoding.

The Reed Decoding Algorithm works for all RM codes. Here we present an example of decoding R(1, 4)

82 UNIT 12.

with this algorithm. In fig. 12.2 we can see that, without any errors:

a1 = y0 + y1

= y2 + y3

· · ·
= y14 + y15,

a2 = y0 + y2

= . . .

We observe that there are 8 votes for every ai. It is clear that R(1, 4) can correct up to 3 errors by majority
logic. If R(2, 4), then the 6 message symbols, a12 to a34, each have 4 votes and, as a result, the code can only
correct one error by majority logic. We now continue to a0:

x′y − a4v4 − . . .− a1v1 = a01 + error,

a0 = 0 or 1 based on the number of 1’s in x′.

Example 12.1.7. Assume that we have a [8, 4, 4] code, in other words R(1, 3), and that we receive 10101101.
Decode the received message using Reed’s Algorithm.

a1 = 1 = 1 = 0 = 1, by majority logic, a1 = 1.
a2 = 0 = 0 = 1 = 0, so a2 = 0.
a3 = 0 = 1 = 1 = 1, so a3 = 1.
x′ = 10101101− 00001111− 00000000− 01010101 = 11110111.
a0 = 1 (modulo 2).
The correct message is a = 1101 and the codeword isx = y+ error= 10101101 + 00001000 = 10100101.
We can see that this is an example of a nonsystematic code.

Definition 12.1.8. The input consists of a function f : Fm
2 → F2 such that there exists a polynomial P of

degree r with ∆(f, P) < 2m−r

2 . The output of Reed’s Algorithm is the polynomial P .

Theorem 12.1.9. In the case of no errors, aσ =
∑
P∈Ui

xp, i = 1, . . . , 2m−r, where σ indicates a string of r

symbols.

If more than 1
2(2

m−r − 1) errors occur, then the Reed Decoding Algorithm can correct the same number
of errors. For example, if no more than 3 errors occur in R(1, 4) then the algorithm can correct them. The
theorem consequently implies that all aσ can be recovered correctly if no more than 1

2(2
m−r−1) errors occur.

If r > 1, then all aσr can be recovered and subsequently the rest of the a’s by majority logic decoding.

Unit 13

Course Structure

• Markovian decision Process

• Powers of Stochastic Matrices

• Regular matrices

13.1 Introduction

A Markov Process consists of a set of objects and a set of states such that

(i) at any given time, each object must be in a state (distinct objects need not be in distinct states).

(ii) the probability that an object moves from one state to another state which may be the same as the first
state, in one time period depends only on those two states.

The integral numbers of time periods past the moment when the process is started represent the stages of the
process which may be finite or infinite.

If the number of states is finite or countably infinite, the Markov process is called a Markov Chain. A
finite Markov chain is one having a finite number of states. We denote the probability of moving from state
i to state j in one time period by pij . For an N state Markov chain, where N is a fixed positive integer, the
N ×N matrix P = [pij] is the stochastic or transition matrix associated with the process. Necessarily, the
elements of each row of P sum to unity.

Theorem 13.1.1. Every stochastic matrix has 1 as an eigen value (possible multiple and none of the eigen
values exceed 1 in absolute value).

Because of the way P is defined, it proves convenient in this chapter to indicate N -dimensional vectors as
row vectors.

According to the theorem, there exists a vector X ̸= 0 such that XP = X . This left eigen value is called a
fixed point of P .

83

84 UNIT 13.

13.2 Powers of Stochastic Matrices

We denote the nth power of a matrix P by

Pn ≡ [p
(n)
ij],

where p
(n)
ij represents the probability that an object moves from state i to state j in n-time periods. Pn is

obviously a stochastic matrix.
We write X(0) = [x

(0)
1 , x

(0)
2 , . . . , x

(0)
N] which represents the proportion of objects in each state of the

beginning of the process whereas

X(n) = [x
(n)
1 , x

(n)
2 , . . . , x

(n)
N],

where, x(N)
i represents the proportion of objects in state i at the end of nth time period, 1 ≤ i ≤ N .

X(n) is related to X(0) by the relation X(n) = X(0)Pn.

Example 13.2.1. Grapes in Kashmir are classified as either superior, average or poor. Following a superior
harvest, the probabilities of having a superior, average and poor harvest in the next year are 0, 0.8 and 0.2.
Following an average harvest, the probabilities of a superior, average and poor harvest are 0.2, 0.6 and 0.1.
Following a poor harvest, the probabilities of a superior, average and poor harvest are 0.1, 0.8 and 0.1. De-
termine the probabilities of a superior harvest for each of the next five years if the most recent harvest was
average.

Solution. The transition matrix is given by

superior(S) average(A) poor(P)()S 0 0.8 0.2
A 0.2 0.6 0.2
P 0.1 0.8 0.1

Since the most recent harvest rate was average, so,

X(0) =
S A P
()0 1 0

initial probability distribution. Thus,
X(5) = X(0)P 5.

Now,

P 2 =

 0 0.8 0.2
0.2 0.6 0.2
0.1 0.8 0.1

 0 0.8 0.2
0.2 0.6 0.2
0.1 0.8 0.1


=

0 + 0.16 + 0.02 0 + 0.48 + 0.16 0 + 0.16 + 0.02
0 + 0.12 + 0.02 0.16 + 0.36 + 0.16 0.04 + 0.12 + 0.02
0 + 0.16 + 0.01 0.08 + 0.48 + 0.08 0.02 + 0.16 + 0.01


=

0.18 0.64 0.18
0.14 0.68 0.18
0.17 0.64 0.19



13.2. POWERS OF STOCHASTIC MATRICES 85

P 4 =

0.18 0.64 0.18
0.14 0.68 0.18
0.17 0.64 0.19

0.18 0.64 0.18
0.14 0.68 0.18
0.17 0.64 0.19


=

0.1526 0.6656 0.1818
0.1510 0.6672 0.1818
0.1525 0.6656 0.1819

 .

P 5 =

0.1526 0.6656 0.1818
0.1510 0.6672 0.1818
0.1525 0.6656 0.1819

0.18 0.64 0.18
0.14 0.68 0.18
0.17 0.64 0.19


=

0.151558 0.666624 0.181818
0.151494 0.666688 0.181818
0.151557 0.666624 0.181819

 .

Thus,

X(5) =
[
0 1 0

]
P 5

=
[
0.151494 0.666688 0.181818

]
.

Hence the probability of a superior harvest for each of the next five years is 0.151494. ■

Definition 13.2.2. (Regular Matrix:) A stochastic matrix is regular if one of its powers contains only positive
entries.

Theorem 13.2.3. If a stochastic matrix is regular, then 1 is an eigen value of multiplicity one, and all other
eigen values λi satisfy |λi| ≤ 1.

Example 13.2.4. Is the stochastic matrix

P =

[
0 1
0.4 0.6

]
regular?

Solution.

P 2 =

[
0 1
0.4 0.6

] [
0 1
0.4 0.6

]
=

[
0.40 0.60
0.24 0.76

]
.

Since each entry of P 2 is positive, hence P is regular. ■

Unit 14

Course Structure

• Ergodic Matrices

14.1 Ergodic Matrix

Definition 14.1.1. (Ergodic Matrix:) A stochastic matrix P is ergodic if lim
n→∞

Pn exists, that is, each P
(n)
ij

has a limit as n → ∞. We denote L = lim
n→∞

Pn. Obviously, P is a stochastic matrix. X(∞) is defined by the

equation X(∞) = X(0)L.

The components of X(∞) are limiting state distributions and represent the approximate proportions of
objects in the various states of a Markov chain after a large number of time periods.

Theorem 14.1.2. A stochastic matrix is ergodic if and only if the only eigen value λ of magnitude 1 is 1 itself
and if λ = 1 has multiplicity k, then there exists k linearly independent (left) eigen vectors associated with
this eigen value.

Theorem 14.1.3. A regular matrix is ergodic but the converse is not true in general.

If P is regular with limit matrix L, then the rows of L are identical with one another, each being the unique
left eigen vector of P associated with the eigen value λ = 1 and having the sum of its components equal to
unity.

Let us denote this eigen vector by E1. Now, if P is regular, then regardless of the initial distribution X(0),
we can write X(∞) = E1(= X(0)L).

Example 14.1.4. Is the stochastic matrix

P =

[
0 1
0.4 0.6

]
ergodic? Calculate L = lim

n→∞
Pn, if it exists.

Solution. Since each entry of

P 2 =

[
0.40 0.60
0.24 0.76

]
86

14.1. ERGODIC MATRIX 87

is positive, P is regular and therefore, ergodic; hence L = lim
n→∞

Pn exists. Now,

[
x1 x2

] [0.40 0.60
0.24 0.76

]
=

[
x1 x2

]
⇒ x1 − 0.4x2 = 0 (14.1.1)

and x1 + x2 = 1. (14.1.2)

Solving equation (14.1.1) and (14.1.2), we get,

x1 =
2

7
and x2 =

5

7
.

Thus,

E1 =
[
2
7

5
7

]
and lim

n→∞
Pn = L =

[
2
7

5
7

2
7

5
7

]
.

■

Theorem 14.1.5. If every eigen value of a matrix P yields linearly independent (left) eigen vectors in number
equal to its multiplicity, then there exists a non-singular matrix M , whose rows are left eigen vectors of P ,
such that D ≡ MPM−1 is a diagonal matrix. The diagonal elements of D are the eigen values of P , repeated
according to multiplicity.

We have,

L = lim
n→∞

Pn

= (M−1M) lim
n→∞

Pn(M−1M)

= M−1
(
lim
n→∞

MPnM−1
)
M

= M−1
(
lim
n→∞

(MPM−1)n
)
M

= M−1
(
lim
n→∞

Dn
)
M

= M−1



1
1

. . .
1

0
. . .

0


N×N

M.

The diagonal matrix on the right has k 1′s and (N − k) 0′s on the main diagonal.

Example 14.1.6. Is the stochastic matrix

P =


1 0 0 0
0.4 0 0.6 0
0.2 0 0.1 0.7
0 0 0 1


regular? Is it ergodic? Calculate L = lim

n→∞
Pn, if it exists.

88 UNIT 14.

Solution. The characteristic equation of P is∣∣∣∣∣∣∣∣
1− λ 0 0 0
0.4 −λ 0.6 0
0.2 0 0.1− λ 0.7
0 0 0 1− λ

∣∣∣∣∣∣∣∣ = 0

⇒ (1− λ)(−λ)(0.1− λ)(1− λ) = 0

⇒ λ = 1, 1, 0.1, 0.

Thus, λ1 = 1 (multiplicity 2), λ2 = 0.1, λ3 = 0 are the eigen values of P . Hence P is not regular.
The left eigen vectors for the double eigen value λ1 = 1 are [1, 0, 0, 0] and [0, 0, 0, 1], which are linearly

independent. Hence P is ergodic. Thus, L = lim
n→∞

Pn exists.

We now fine the eigen vectors corresponding to λ2 = 0.1 and λ3 = 0.

[
x1 x2 x3 x4

] 
1 0 0 0
0.4 0 0.6 0
0.2 0 0.1 0.7
0 0 0 1

 = 0.1
[
x1 x2 x3 x4

]
⇒ (1− 0.1)x1 + 0.4x2 + 0.2x3 = 0

−0.2x2 = 0

0.6x2 + (0.1− 0.1)x3 = 0

0.7x3 + (1− 0.1)x4 = 0

⇒ 0.9x1 + 0.4x2 + 0.2x3 = 0

−0.1x2 = 0

0.6x2 = 0

0.7x3 + 0.9x4 = 0.

Solving these equations, we get,

x1 = −2, x2 = 0, x3 = 9, x4 = −7.

Thus, the eigen vector corresponding to λ2 is [−2, 0, 9,−7]. Again,

[
x1 x2 x3 x4

] 
1 0 0 0
0.4 0 0.6 0
0.2 0 0.1 0.7
0 0 0 1

 = 0
[
x1 x2 x3 x4

]
⇒ x1 + 0.6x2 + 0.2x3 = 0

0.6x2 + 0.1x3 = 0

0.7x3 + x4 = 0.

Solving these equations, we get

x1 = 4, x2 = 5, x3 = −30, x4 = 21.

Thus, the eigen vector corresponding to λ3 is [4, 5,−30, 21].

14.1. ERGODIC MATRIX 89

To make P diagonalizable, we consider

M =


1 0 0 0
0 0 0 1
−2 0 9 −7
4 5 −30 21

 and D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

We now find M−1.

[M : I] =


1 0 0 0 : 1 0 0 0
0 0 0 1 : 0 1 0 0
−2 0 9 −7 : 0 0 1 0
4 5 −30 21 : 0 0 0 1


R2→R4−−−−−→
R4→R2


1 0 0 0 : 1 0 0 0
4 5 −30 21 : 0 0 0 1
−2 0 9 −7 : 0 0 1 0
0 0 0 1 : 0 1 0 0


R2→R2−4R1−−−−−−−−→
R3→R3+2R1


1 0 0 0 : 1 0 0 0
0 5 −30 21 : −4 0 0 1
0 0 9 −7 : 2 0 1 0
0 0 0 1 : 0 1 0 0


R2→ 1

5
R2−−−−−−→

R3→ 1
9
R3


1 0 0 0 : 1 0 0 0
0 1 −6 21

5 : −4
5 0 0 1

5
0 0 1 −7

9 : 2
9 0 1

9 0
0 0 0 1 : 0 1 0 0


R2→R2+6R3−−−−−−−−→


1 0 0 0 : 1 0 0 0
0 1 0 − 7

15 : 8
15 0 2

3
1
5

0 0 1 −7
9 : 2

9 0 1
9 0

0 0 0 1 : 0 1 0 0


R2→R2+

7
15

R4−−−−−−−−−→
R3→R3+

7
9
R4


1 0 0 0 : 1 0 0 0
0 1 0 0 : 8

15
7
15

2
3

1
5

0 0 1 0 : 2
9

7
9

1
9 0

0 0 0 1 : 0 1 0 0

 .

Thus

M−1 =


1 0 0 0
8
15

7
15

2
3

1
5

2
9

7
9

1
9 0

0 1 0 0

 .

90 UNIT 14.

Thus,

L =


1 0 0 0
8
15

7
15

2
3

1
5

2
9

7
9

1
9 0

0 1 0 0



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 0 0 1
−2 0 9 −7
4 5 −30 21



=


1 0 0 0
8
15

7
15 0 0

2
9

7
9 0 0

0 1 0 0




1 0 0 0
0 0 0 1
−2 0 9 −7
4 5 −30 21



=


1 0 0 0
8
15 0 0 7

15
2
9 0 0 7

9
0 0 0 1

 .

■

Example 14.1.7. Construct the state-transition diagram for the Markov chain

P =

1 2 3 4


1 1 0 0 0
2 0.4 0 0.6 0
3 0.2 0 0.1 0.7
4 0 0 0 1

Solution. [A state-transition diagram is an oriented network in which the nodes represent states and the arcs
represent possible transitions.]

Labelling the states by 1, 2, 3, 4, we have the following state-transition diagram.
The number on each arc is the probability of the transition. ■

Example 14.1.8. Prove that if P is regular, then all the rows of L = lim
n→∞

Pn are identical.

Solution. Given, L = lim
n→∞

Pn. Also, we have, L = lim
n→∞

Pn−1. Consequently,

L = lim
n→∞

Pn = lim
n→∞

(Pn−1)P = (lim
n→∞

Pn−1)P = LP

which implies that every row of L is a left eigen vector of P corresponding to the eigen value λ = 1.
Now, P being regular, all such eigen vectors are scalar multiples of a single vector.
On the other hand, L being stochastic, each row of it sums to unity. Thus it follows that all the rows are

identical. ■

14.1. ERGODIC MATRIX 91

Example 14.1.9. Prove that if λ is an eigen value of a stochastic matrix P , then |λ| ≤ 1.

Solution. Let E = [e1 e2 . . . eN]T be a right eigen vector corresponding to λ. Then PE = λE, and
considering the jth component of both sides of this equality, we conclude that

N∑
k=1

pjkek = λej . (14.1.3)

Let ei be that component of E having the greatest magnitude, that is,

|ei| = max{|e1|, |e2|, . . . , |eN |}. (14.1.4)

By definition, E ̸= 0, so that |ei| > 0. Thus, it follows from (14.1.3), with j = i and from (14.1.4) that,

|λ||ei| = |λei| =

∣∣∣∣∣
N∑
k=1

pikek

∣∣∣∣∣ ≤
N∑
k=1

pik|ek| ≤ |ei|
N∑
k=1

pik = |ei|,

which implies that |λ| ≤ 1. ■

Example 14.1.10. Formulate the following process as a Markov chain:

The manufacturer of Hi-Glo toothpaste currently controls 60% of the market in a particular city. Data
from the previous year show that 88% of Hi-Glo’s customers remained loyal to Hi-Glo, while 12% of Hi-
Glo’s customers switched to rival brands. In addition, 85% of the competition’s customers remained loyal to
the competition, while the other 15% switched to Hi-Glo. Assuming that these trends continue, determine
Hi-Glo’s share of the market

(a) in 5 years and (b) over the long run.

Solution. We take state 1 to be consumption of Hi-Glo toothpaste and state 2 to be consumption of a rival
brand. Then p11 is the probability that a Hi-Glo customer remains loyal to Hi-Glo, that is, 0.88; p12 is the
probability that a Hi-Glo customer switches to another brand, that is, 0.12; p21 is the probability that the
customer of another brand switches to Hi-Glo, that is, 0.15; p22 is the probability that customer of another
brand remains loyal to the competition, that is, 0.85.

The stochastic matrix (Markov chain) defined by these transition probabilities is

P =

1 2()
1 0.88 0.12
2 0.15 0.85

The initial probability distribution vector is X(0) = [0.60 0.40], where, the components x
(0)
1 = 0.60 and

x
(0)
2 = 0.40 represent the proportions of people initially in states 1 and 2, respectively.

(a) Thus,

X(5) = X(0)P 5

=
[
0.60 0.40

] [0.6477 0.3523
0.4404 0.5596

]
=

[
0.5648 0.4352

]
.

92 UNIT 14.

After 5 years, Hi-Glo’s share of the market will have declined to 56.48%. Now,

P =

[
0.88 0.12
0.15 0.85

]
is regular, since each entry of the first power of P is positive, that is, P is positive. Hence P is ergodic.
So, lim

n→∞
Pn = L(say) exists. Now, the left eigen vector corresponding to λ = 1 is given by

[
x1 x2

] [0.88 0.12
0.15 0.85

]
=
[
x1 x2

]
⇒ 0.12x1 − 0.15x2 = 0 and x1 + x2 = 1.

Solving, we get,

x1 =
5

9
and x2 =

4

9

and thus
E1 =

[
x1 x2

]
=
[
5
9

4
9

]
.

Hence,

L = lim
n→∞

Pn =

[
5
9

4
9

5
9

4
9

]
.

(b)

X(∞) = X(0)L

=
[
0.60 0.40

] [5
9

4
9

5
9

4
9

]
=

[
1
3 + 2

9
12
45 + 16

45

]
=
[
5
9

4
9

]
= E1.

Therefore, over the long run, Hi-Glo’s share of the market will stabilize at 5
9 , that is, approximately

55.56%.

■

Example 14.1.11. Solve the previous problem, if Hi-Glo currently controls 90% of the market

(a)

X(5) = X(0)P 5

=
[
0.90 0.10

] [0.6477 0.3523
0.4404 0.5596

]
=

[
0.6270 0.3730

]
.

Therefore, after 5 years, Hi-Glo controls approximately 68% of the market.

(b) Since P is regular,
X(∞) = E1 =

[
5
9

4
9

]
.

Example 14.1.12. The geriatric ward of a hospital lists its patients as bedridden or ambulatory. Historical data
indicate that over a 1-week period, 30% of all ambulatory patients are discharged, 40% remain ambulatory, and
30% are remanded to complete bed rest. During the same period, 50% of all the bedridden patients become
ambulatory, 20% remain bedridden, and 30% die. Currently the hospital has 100 patients in its geriatric ward,
with 30 bedridden and 70 ambulatory. Determine the status of the patients

14.1. ERGODIC MATRIX 93

(a) after 2 weeks, and

(b) over the long run

(The status of a discharged patient does not change if the patient die).

Solution. We take state 1 to be discharged, sate 2 to be ambulatory, state 3 to be bedridden or bed rest and
state 4 to be died patients. Consider 1 time period to be 1 week.

The transition probabilities given by the following transition matrix:

P =

1(Discharged) 2(Ambulatory) 3(Bedridden) 4(Died)


1 1 0 0 0
2 0.3 0.4 0.3 0
3 0 0.5 0.2 0.3
4 0 0 0 1

Since, currently the hospital has 100 patients in its geriatric ward, with 30 bedridden and 70 ambulatory, so
the initial probability distribution vector is

X(0) =
1 2 3 4
()0 0.7 0.3 0

Now,

P 2 =


1 0 0 0
0.3 0.4 0.3 0
0 0.5 0.2 0.3
0 0 0 1




1 0 0 0
0.3 0.4 0.3 0
0 0.5 0.2 0.3
0 0 0 1



=


1 0 0 0

0.42 0.31 0.18 0.09
0.15 0.30 0.19 0.36
0 0 0 1

 .

(a)

X(2) = X(0)P 2

=
[
0 0.7 0.3 0

] 
1 0 0 0

0.42 0.31 0.18 0.09
0.15 0.30 0.19 0.36
0 0 0 1


=

[
0.339 0.307 0.183 0.171

]
.

After 2 weeks, there are approximately 34% discharged, 30% ambulatory, 18% bedridden and 17%
dead patients.

Now, the characteristic equation of P is

|P − λI| = 0

⇒

∣∣∣∣∣∣∣∣
1 0 0 0
0.3 0.4 0.3 0
0 0.5 0.2 0.3
0 0 0 1

∣∣∣∣∣∣∣∣ = 0

⇒ (1− λ)2(λ2 − 0.6λ− 0.07) = 0

⇒ λ = 1, 1, 0.7, − 0.1.

94 UNIT 14.

Since λ1 = 1 (multiplicity 2), λ2 = 0.7, λ3 = −0.1 are the eigen values of P , so P is not regular.

The left eigen vectors for the double eigen value 1 are [1 0 0 0] and [0 0 0 1] which are linearly
independent. Hence P is ergodic. Therefore,

L = lim
n→∞

Pn.

Now,

[
x1 x2 x3 x4

] 
1 0 0 0
0.3 0.4 0.3 0
0 0.5 0.2 0.3
0 0 0 1

 = 0.7
[
x1 x2 x3 x4

]
⇒ (1− 0.7)x1 + 0.3x2 = 0

(0.4− 0.7)x2 + 0.5x3 = 0

0.3x2 + (0.2− 0.7)x3 = 0

0.3x3 + (1− 0.7)x4 = 0

⇒ 0.3x1 + 0.3x2 = 0

0.3x2 − 0.5x3 = 0

0.3x3 + 0.3x4 = 0.

Solving the above equations, we get

x1 = −x2 = −5

3
x3 =

5

3
x4.

Let x4 = 3. Then we get
x1 = 5, x2 = −5, x3 = −3.

Thus, [
x1 x2 x3 x4

]
=
[
5 −5 −3 3

]
is the eigen vector corresponding to λ2 = 0.7.

Now,

[
x1 x2 x3 x4

] 
1 0 0 0
0.3 0.4 0.3 0
0 0.5 0.2 0.3
0 0 0 1

 = −0.1
[
x1 x2 x3 x4

]
⇒ (1 + 0.1)x1 + 0.3x2 = 0

(0.4 + 0.1)x2 + 0.5x3 = 0

0.3x2 + (0.2 + 0.1)x3 = 0

0.3x3 + (1 + 0.1)x4 = 0

⇒ 1.1x1 + 0.3x2 = 0

x2 + x3 = 0

0.3x3 + 1.1x4 = 0.

Solving the equations, we get,

x1 = − 3

11
x2 =

3

11
x3 = −x4.

14.1. ERGODIC MATRIX 95

Taking x2 = 11, we get
x1 = −3, x2 = 11, x3 = 3, x4 = 3.

Thus, [−3 11 3 3] is the eigen vector corresponding to λ3 = −0.1.

To make P diagonalizable, we consider

M =


1 0 0 0
0 0 0 1
5 −5 −3 3
−3 11 3 3

 , D =


1 0 0 0
0 1 0 0
0 0 0.4 0
0 0 0 −0.1

 .

To find M−1:

[M : I] =


1 0 0 0 : 1 0 0 0
0 0 0 1 : 0 1 0 0
5 −5 −3 3 : 0 0 1 0
−3 11 3 3 : 0 0 0 1


R2↔R4−−−−−−−−→

R3→R3−5R1


1 0 0 0 : 1 0 0 0
−3 11 3 3 : 0 0 0 1
0 −5 −3 3 : −5 0 1 0
0 0 0 1 : 0 1 0 0


R2→R2+3R1−−−−−−−−→


1 0 0 0 : 1 0 0 0
0 11 3 3 : 3 0 0 1
0 −5 −3 3 : −5 0 1 0
0 0 0 1 : 0 1 0 0


R2→R2−3R4−−−−−−−−→
R3→R3−3R4


1 0 0 0 : 1 0 0 0
0 11 3 0 : 3 −3 0 1
0 −5 −3 0 : −5 −3 1 0
0 0 0 1 : 0 1 0 0


R2→ 1

11
R2−−−−−−→


1 0 0 0 : 1 0 0 0
0 1 3

11 0 : 3
11 − 3

11 0 1
11

0 −5 −3 0 : −5 −3 1 0
0 0 0 1 : 0 1 0 0


R3→R3+5R2−−−−−−−−→


1 0 0 0 : 1 0 0 0
0 1 3

11 0 : 3
11 − 3

11 0 1
11

0 0 −18
11 0 : −40

11 −48
11 1 5

11
0 0 0 1 : 0 1 0 0


R2→R2+

1
6
R3−−−−−−−−→

R3→− 11
18

R3


1 0 0 0 : 1 0 0 0
0 1 0 0 : −1

3 −1 1
6

1
66

0 0 1 0 : 20
9

8
3 −11

18 − 5
18

0 0 0 1 : 0 1 0 0

 .

Thus,

M−1 =


1 0 0 0
−1

3 −1 1
6

1
66

20
9

8
3 −11

18 − 5
18

0 1 0 0

 .

96 UNIT 14.

Thus,

lim
n→∞

Pn = L =


1 0 0 0
−1

3 −1 1
6

1
66

20
9

8
3 −11

18 − 5
18

0 1 0 0



1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 0 0 1
5 −5 −3 3
−3 11 3 3



=


1 0 0 0
−1

3 −1 0 0
20
9

8
3 0 0

0 1 0 0




1 0 0 0
0 0 0 1
5 −5 −3 3
−3 11 3 3



=


1 0 0 0
−1

3 0 0 −1
20
9 0 0 8

3
0 0 0 1

 .

(b) Thus, the status of the patients over the long run is

X(∞) = X(0)L

=
[
0 0.7 0.3 0

] 
1 0 0 0
−1

3 0 0 −1
20
9 0 0 8

3
0 0 0 1


=

[
13
30 0 0 1

10

]
=
[
0.43 0 0 0.1

]
.

Therefore, over the long run, there are 43% discharged patients and 10% patients die. No ambulatory
or bedridden patients remain in the geriatric ward.

■

Example 14.1.13. The training programme for production supervisors at a particular company consists of two
phases. Phase 1, which involves 3 weeks of classroom work, is followed by Phase 2, which is a 3 week appren-
ticeship program under the direction of working supervisors. From past experience, the company expects only
60% of those beginning classroom training to be graduated into the apprenticeship phase, with the remaining
40% dropped completely from the training program. Of those who make it to the apprenticeship phase, 70%
are graduated as supervisors, 10% are asked to repeat the second phase, and 20% are dropped completely from
the program. How many supervisors can the company expect from its current training programme if it has 45
people in the classroom phase and 21 people in the apprenticeship phase?

Solution. We consider one time period to be 3 weeks and define states 1 through 4 as the conditions of being
dropped, a classroom trainee, an apprentice, and a supervisor, respectively. If we assume that discharged
individuals never re-enter the training programme and that supervisors remain supervisors, then the transition
probabilities are given by the Markov chain

P =

1 2 3 4


1 1 0 0 0
2 0.4 0 0.6 0
3 0.2 0 0.1 0.7
4 0 0 0 1

14.1. ERGODIC MATRIX 97

. Since there are 45 + 21 = 66 people in the training programme currently, so the initial probability vector is
given by

X(0) =

[
0,

45

66
,
21

66
, 0

]
.

We have from example 14.1.6,

lim
n→∞

Pn = L =


1 0 0 0
8
15 0 0 7

15
2
9 0 0 7

9
0 0 0 1

 .

X(∞) = X(0)L

=
[
0 45

66
21
66 0

] 
1 0 0 0
8
15 0 0 7

15
2
9 0 0 7

9
0 0 0 1


=

[
0.4343 0 0 0.5657

]
.

Eventually, 43.43% of those currently in training (or about 29 people) will be dropped from the programme
and 56.67% (or about 37 people) will become supervisors. ■

Example 14.1.14. Solve the previous problem if all 66 people are currently in the classroom phase of training
programme.

Solution. Here, X(0) = [0 1 0 0]. Thus,

X(∞) = X(0)L

=
[
0 1 0 0

] 
1 0 0 0
8
15 0 0 7

15
2
9 0 0 7

9
0 0 0 1


=

[
8
15 0 0 7

15

]
.

Thus, 8
15 × 66 ≃ 35 people will ultimately drop from the program and the remaining 66 − 35 = 31 people

eventually become supervisors. ■

Unit 15

Course Structure

• Geometric programming

• General form of GP (Unconstrained GP)(Primal Problem)

15.1 Geometric Programming

We shall focus our attention on a rather interesting technique called Geometric Programming for solving a
special type of non-linear programming problem. This technique is initially derived from inequalities rather
than the calculus and its extension. This technique was given the name geometric programming because the
geometric arithmetic mean inequality was the basis of its development. The advantage here is that it is usu-
ally much simpler to work with the dual problem than the primal problem. Geometric programming derives
its name from the fact that it is based on the certain geometric concept such as orthogonality and arithmetic
geometric inequality. It was developed in early 1960’s by Duffin, Peterson and Zener for solving the class of
optimization problem that involve special type of functions called posynomial (positive+ polynomial).

A real expression of the form

Cj

n∏
i=1

(xi)
aij

where cj , aij are real and X = (x1, x2, . . . , xm)T > 0 is called monomial in X .

Example: 5.7x31x2 − 4x2.53 is a monomial.

Posynomial and Signomial: A generalised polynomial that consist of a finite number of monomials such
as

f(x) =
n∑

j=1

Cj

m∏
i=1

(xi)
aij

is said to be posynomial if all the coefficients Cj are positive; is called the signomial if the coefficients Cj are
negative.

98

15.1. GEOMETRIC PROGRAMMING 99

The G.P approach instead of solving a non-linear programming problem first finds the optimal value of the
objective function by solving its dual problem and then determines an optimal solution to the given NLPP
from the optimal solution of the dual.

15.1.1 General form of G.P (Unconstrained G.P) (Primal Problem)

min f(x) =
n∑

j=1

cjuj(x)

such that xi ≥ 0 with cj > 0

and uj(x) =

n∏
i=1

(xj)
aij ,

where aij may be any real number.

15.1.2 Necessary conditions for optimality

The necessary conditions for optimality can be obtained by taking partial derivatives with respect to each xr
and equating the result with 0. Thus

∂f(x)

∂xr
=

n∑
j=1

cj
∂uj(x)

∂xr
= 0

But,
∂

∂xr
uj(x) =

arj
xr

uj(x).

Putting this result in the previous equation, we get,

∂f(x)

∂xr
=

1

xr

n∑
j=1

arjcjuj(x) = 0.

Let, f∗(x) be the minimum value of f(x). Since, each xr and cj is positive, therefore f∗(x) will also be

positive. Defining
∂f(x)

∂xr
by f∗(x) we get,

n∑
j=1

arjcjuj(x)

f∗(x)
= 0.

Now, we take a simple transformation of variable as

yj =
cjuj(x)

f∗(x)
, j = 1, 2, . . . , n.

Using this transformation, the necessary conditions for local minimum becomes,

n∑
j=1

arjyj = 0; r = 1, 2, . . . ,m. (15.1.1)

100 UNIT 15.

Thus, due to the definition of yj , we obtain

n∑
j=1

yj =
1

f∗(x)

n∑
j=1

cjuj(x) = 1. (15.1.2)

At the optimal solution, conditions (15.1.1) and (15.1.2) are the necessary conditions for optimality of non-
linear function and also known as orthogonality and normality conditions respectively. This condition give a
unique value of yj for m+ 1 = n and all equations are independent but for n > (m+ 1), the value of yj no
longer remains independent.

[Degree of G.P difficulty (D.D) of G.P is equal to number of terms in G.P -(1 + number of variables in G.P]

∴ D.D = n− (m+ 1), (> 0 infinite solution).

Conditions (15.1.1) and (15.1.2) can be expressed as

AY = b,

where

A =


1 1 · · · 1
a11 a12 · · · a1n

...
...

...
...

am1 am2 · · · amn

 Y =


y1
y2
...
yn

 and b =


1
0
...
0


Thus, we require to form the normality and orthogonality condition AY = B. This means that the original
NLP problem is reduced to one of finding the set of values of Y that satisfy this linear non-homogeneous
equation. Hence, to determine the unique value of yj for the purpose of minimizing effect.

(i) Rank (A, b) > Rank (A), there will be no solution, where (A, b) denote the augmented matrix.

(ii) Rank (A, b) = Rank (A), then a unique solution.

(iii) Rank (A) < n, i.e n > m+ 1, that is infinite number of solutions exist.

To find the minimum value of f(x)

At the optimal solution we know that

f∗(x) =
cjuj(x)

yj
=

1

yj
cj

n∏
i=1

(xi)
aij

Raising both side to power of yj and taking the product we get,

n∑
j=1

{
f∗(x)

}yj
=

n∏
j=1

{
1

yj
cj

n∏
i=1

(xi)
aij

}yj

,

Now, since
n∑

j=1

yj = 1, therefore

n∏
j=1

{f∗(x)}yj =
[
f∗(x)

] n∑
j=1

yj
= f∗(x)

15.1. GEOMETRIC PROGRAMMING 101

In R.H.S of the above equation we have
n∏

j=1

[(
cj
yj

) m∏
i=1

(xi)
aij

]yj
=

n∏
j=1

(
cj
yj

)yj n∏
j=1

{
m∏
i=1

(xi)
aij

}yj

=

n∏
j=1

(
cj
yj

)yj m∏
i=1

(xi)
∑n

j=1 aijyj

=

n∏
j=1

(
cj
yj

)yj m∏
i=1

(xi)
0 [By Eq. (15.1.1)]

Thus,

min f(x) = f∗(x) =
n∏

j=1

(
cj
yj

)yj

and

∴ f(x) ≥
n∏

j=1

(
cj
yj

)yj

.

where yj must satisfy the orthogonality and normality conditions. For the given value of f∗ and unique value
of yj , the solution to a set of equations can be obtained from

cj

m∏
i=1

(xi)
aij = yjf

∗(x).

Dual Problem:

max g(y) =

n∏
j=1

(
cj
yj

)yj

subject to
n∑

j=1

aijyj = 0

and
n∑

j=1

yj = 1

yj ≥ 0.

Theorem 15.1.1. If x is a feasible solution vector of the unconstraint of a primal geometric programming and
y is a feasible solution vector for DP (Dual problem), then

f(x) ≥ g(y). (Primal Dual inequality)

Proof. The expression for f(x) can be written as

f(x) =

n∑
j=1

Cj

m∏
i=1

(xi)
aij

yj
.

Here, weights are y1, y2, . . . , yn and the positive terms are

C1

m∏
i=1

(xi)
ai1

y1
,

C2

m∏
i=1

(xi)
ai2

y2
, . . . ,

Cn

m∏
i=1

(xi)
ain

yn
.

102 UNIT 15.

Now, applying weighted Arithmetic Mean- Geometric mean inequality,
y1 ·

C1

m∏
i=1

(xi)
ai1

y1
+ y2 ·

C2

m∏
i=1

(xi)
ai2

y2
+ · · ·+ yn ·

Cn

m∏
i=1

(xi)
ain

yn

y1 + y2 + · · ·+ yn



y1+y2+···+yn

≥


C1

m∏
i=1

(xi)
ai1

y1


y1

·


C2

m∏
i=1

(xi)
ai2

y2


y2

· · ·


Cn

m∏
i=1

(xi)
ain

yn


yn

or, f(x) ≥
n∏

j=1


Cj

m∏
i=1

(xi)
aij

yj


yj

[since y1 + y2 + · · ·+ yn = 1 for normality condition]

or, f(x) ≥
n∏

j=1

(
Cj

yj

)yj m∏
i=1

(xi)

n∑
j=1

aijyj
(15.1.3)

or, f(x) ≥
n∏

j=1

(
Cj

yj

)yj
[

n∑
i=1

aijyj = 0, orthogonality condition

]
or, f(x) ≥ g(y).

For constraint, after above

gi(x) =

P (i)∑
r=1

yir


Cir

n∏
i=1

(xi)
airj

yir


Applying weighted arithmetic mean geometric mean inequality, we have

 gi(x)
P (i)∑
r=1

yir


P (i)∑
r=1

yir

≥
m∏
i=1

P (i)∏
r=1


Cir

n∏
i=1

(xi)
airj

yir


yir

(gi(x))

P (i)∑
r=1

yir
≥

m∏
i=1

P (i)∏
r=1

(
Cir

yir

)yir n∏
i=1

(xi)

P (i)∑
r=1

airjyir

P (i)∑
r=1

yir

yir

.

Since gi(x) ≤ 1 (constraint), so,

1 ≥ (gi(x))

P (i)∑
r=1

yir
.

15.1. GEOMETRIC PROGRAMMING 103

Hence,

1 ≥
m∏
i=1

P (i)∏
r=1

(
Cir

yir

)yir n∏
i=1

(xi)

P (i)∑
r=1

airjyir

P (i)∑
r=1

yir

yir

. (15.1.4)

Multiplying (15.1.3) and (15.1.4), we have

f(x) ≥
n∏

j=1

(
Cj

yj

)yj m∏
1=1

P (i)∏
r=1

(
Cir

yir

)yir

P (i)∑
r=1

yir

yir (xi)

n∑
i=1

aijyj+
m∑
i=1

P (i)∑
r=1

airjyir
.

Using orthogonality condition,
n∑

i=1

aijyj +

m∑
i=1

P (i)∑
r=1

airjyir = 0.

Thus, we have,

f(x) ≥
n∏

j=1

(
Cj

yj

)yj m∏
1=1

P (i)∏
r=1

(
Cir

yir

)yir

P (i)∑
r=1

yir

yir
or, f(x) ≥ g(y).

Example 15.1.2. Solve the following NLPP by geometric programming technique.

min z = 7x1x
−1
2 + 3x2x

−2
3 + 5x−3

1 x2x3 + x1x2x3

x1, x2, x3 ≥ 0

Solution.

A =


1 0 −3 1
−1 1 1 1
0 −2 1 1
1 1 1 1

 Y =


y1
y2
y3
y4

 and b =


0
0
0
1


and we get AY = b with

y1 =
1

2
, y2 =

1

6
, y3 =

5

24
, y4 =

3

24
, f∗(x) =

761

50
x∗1 = 1.315, x∗2 = 1.21, x∗3 = 1.2

Now AY = b gives 
1 0 −3 1
−1 1 1 1
0 −2 1 1
1 1 1 1



y1
y2
y3
y4

 =


0
0
0
1


which leads to the following system of equations

y1 − 3y3 + y4 = 0 (15.1.5)

−y1 + y2 + y3 + y4 = 0 (15.1.6)

−2y2 + y3 + y4 = 0 (15.1.7)

y1 + y2 + y3 + y4 = 1 (15.1.8)

104 UNIT 15.

Now, (15.1.6)-(15.1.8) gives

−y1 + y2 + y3 + y4 − y1 − y2 − y3 − y4 = −1

⇒ −2y1 = −1 ⇒ y1 =
1

2

Now, (15.1.6)-(15.1.7) gives

−y1 + y2 + y3 + y4 + 2y2 − y3 − y4 = 0

⇒ −y1 + 3y2 = 0 ⇒ 3y2 = y1

⇒ 3y2 =
1

2
⇒ y2 =

1

6
.

Now, (15.1.5)-(15.1.7) gives

y1 − 3y3 + y4 + 2y2 − y3 − y4 = 0

⇒ y1 + 2y2 − 4y3 = 0 ⇒ 4y3 = y1 + 2y2

⇒ 4y3 =
1

2
+

1

3
⇒ 4y3 =

5

6
⇒ y3 =

5

24
.

Now,

y4 = 1− (y1 + y2 + y3)

= 1−
(
1

2
+

1

6
+

5

24

)
= 1− 12 + 4 + 5

24

= 1− 21

24

=
3

24

∴ y1 =
1

2
, y2 =

1

6
, y3 =

5

24
, y4 =

3

24

f∗(x) =

(
7

1/2

)1/2

×
(

3

1/6

)1/6

×
(

5

5/24

)5/24

×
(

1

3/24

)3/24

= (14)1/2 × (18)1/6 × (24)5/24 × (8)3/24

= 3.74× 1.62× 1.94× 1.297

= 15.245

=
761

50

15.1. GEOMETRIC PROGRAMMING 105

Now

cj

m∏
i=1

(xi)
aij = yjf

∗(x)

∴ 7x1x
−1
2 =

1

2
× 761

50

⇒ x1x
−1
2 =

761

700
(15.1.9)

and 3x2x
−2
3 =

1

6
× 761

50

⇒ x2x
−2
3 =

761

900

5x−3
1 x2x3 =

5

24
× 761

50

⇒ x−3
1 x2x3 =

761

1200
(15.1.10)

and x1x2x3 =
3

24
× 761

50

⇒ x1x2x3 =
761

400
(15.1.11)

Now (15.1.10) and (15.1.11) gives

x−3
1 x2x3
x1x2x3

=
761/1200

761/400

⇒ x−4
1 =

1

3

x1 =

(
1

3

)−1/4

= 31/4 = 1.316.

∴ x∗1 = 1.316

Now from, (15.1.9) we get

x1x
−1
2 =

761

700

⇒ x−1
2 =

761

700
× 1

x1

⇒ x2 =
700

761
× x1

⇒ x2 =
700

761
× 1.3616

⇒ x2 = 1.21

∴ x∗2 = 1.21

Now, from (15.1.9) we get

x2x
−2
3 =

761

900

x23 =
900

761
x2

x3 =

√
900

761
×
√
1.21 = 1.2

∴ x∗3 = 1.2

106 UNIT 15.

■

Example 15.1.3. Solve the following NLPP by the geometric programming.

min f(x) = 5x1x
−1
2 + 2x−1

1 x2 + 5x1 + x−1
2 ; x1, x2 ≥ 0

Solution. The given function may be written as

f(x) = 5x1x
−1
2 + 2x−1

1 x2 + 5x11x
0
2 + x01x

−1
2 .

(c1, c2, c3, c4) = (5, 2, 5, 1)

The orthogonality and normality conditions are given by 1 −1 1 0
−1 1 0 −1
1 1 1 1

y1y2
y3

 =

00
1


Since n > m+ 1, this equations do not give yj directly. Solving for y1, y2 and y3 in terms of y4 we get, 1 −1 1

−1 1 0
1 1 1

y1y2
y3

 =

 0
y4

1− y4


or y1 = (1− 3y4)/2 = 0.8(1− 3y4); y2 = 0.5(1− y4); y3 = y4.

The corresponding dual problem may be written as

max f(y) =

[
5

0.5(1− 3y4)

]0.5(1−3y4) [2

0.5(1− y4)

]0.5(1−3y4) [5

y4

]y4 [1

y4

]y4
Since, maximization of f(y) is equivalent to log f(y), taking log both sides we have

log f(y) = 0.5(1− 3y4){log 10− log(1− 3y4)}+ 0.5(1− y4){log 4− log(1− y4)}
+y5(log 5− log y4) + y4{log 1− log y4} (15.1.12)

The value of y4 maximizing log f(y) must be unique, because the primal problem has a unique minimum.
Differentiating (15.1.12) with respect to y4 and equating to zero, we have

∂

∂y4
f(y) = −3

2
log 10−

{
−3

2
+

(
−3

2

)
log(1− 3y4)

}
−1

2
log 4− {−1

2
+

(
−1

2

)
log(1− y4)}

+ log 5− {1 + log y4}+ log 1− {1 + log y4} = 0

Then after simplification, we have

− log

{
2× 103/2

5

}
+ log

{
(1− 3y4)

3/2(1− y4)
1/2

y24

}
= 0.

⇒
√

(1− 3y4)3(1− y4)

y24
= 12.6

15.1. GEOMETRIC PROGRAMMING 107

After solving we have y∗4 = 0.16. Hence

y∗1 = 0.26, y∗2 = 0.42, y∗3 = 0.16

The value of f∗(y) = f∗(x)

=

(
5

0.26

)0.26(2

0.42

)0.42(5

0.16

)0.16(1

0.16

)0.160

= 9.661

u1 = y∗1f
∗(x), u2 = y2f

∗(x), u3 = y3f
∗(x), u4 = y4f

∗(x)

5x1 = 0.16× 9.661

⇒ x∗1 =
0.16× 9.661

5
= 0.309

and

x−1
2 = 0.42× 9.661

⇒ x∗2 =
1

0.16× 9.661
= 0.647

■

Unit 16

Course Structure

• Constraint Geometric Programming Problem

16.1 Constraint Geometric Programming Problem

min z = f(x)

such that gi(x) =

P (i)∑
r=1

cijuir(x) = 1, i = 1, 2, . . . ,M.

where P (i) denotes the number of terms in the i-th constraint and uir(x) =

n∏
j=1

(xi)
airj .

Forming Lagrange function to obtain normality and orthogonality condition,

F (x, λ) = f(x) +

M∑
i=1

λi[gi(x)− 1]

and require the conditions,

(i)
∂F

∂xt
=

∂f(x)

∂xt
+

M∑
i=1

λi
∂gi(x)

∂xt
= 0.

(ii)
∂F

∂λi
= gi(x)− 1 = 0; i = 1, 2, . . . ,M.

So, long as right hand side in the second constraint gi(x) = 1, it can be obtained in this form by simple
transformation. However, gi(x) = 0 is not admissible because solution space required x > 0. Considering
once again condition (i), we have

∂F

∂xt
=

n∑
j=1

cjatjcj(x)

xt
+

M∑
i=1

λi

P (i)∑
r=1

cirairtuir(x)

xt

 .

108

16.1. CONSTRAINT GEOMETRIC PROGRAMMING PROBLEM 109

Introducing variables yj for objective and yir for constraints as follows:

yj =
cjuj(x)

f∗(x)
and yir =

λiciruir(x)

f∗(x)

By substituting the values of yj and yir in
∂F

∂xt
= 0, we obtain the orthogonality conditions and normality

condition as

n∑
j=1

atjyj +

M∑
i=1

P (i)∑
r=1

airtyir = 0; t = 1, 2, . . . , n. (Orthogonality Conditions)

n∑
j=1

yj = 1 (Normality Condition)

We have seen in earlier discussion that yj were all positive, because yj =
cjuj(x)

f∗(x)
> 0. However, in the

equality constraint case, yj are again positive. But, yir may be negative because λi need not be non-negative.
To formulate a dual function it is desirable to all yir > 0. But if one of the yir is negative, then its sign
can be reversed by writing the term in the Lagrange function as λq{1 − gq(x)}. Once again normality and
orthogonality conditions can be derived by solving a system of linear equations

n∑
j=1

atjyj

When these equations have a unique solution, the optimal of the original problem can be obtained from the
definition of yj and yir in terms of f∗(x) and x. In case, these equations have an infinite number of solution,
we tend to maximize the dual function given by

max f(y) =
n∏

j=1

(
cj
yj

)yj M∏
i=1

P (i)∏
r=1

(
crj
yij

)yrj

 M∏
i=1

(vi)

where vi =

P (i)∑
r=1

yir such that the orthogonality and normality constraints.

In the above functions the constraints are linear and therefore it is easy to obtain the optimal solution.
Moreover, we may also work with log of the dual function which is linear in the variable δi = log yj and
δir = log yir.

Example 16.1.1. Solve the following NLPP by G.P.

min f(x) = 2x1x
−3
2 + 4x−1

1 x−2
2 +

32

3
x1x2

such that x−1
1 x22 = 0

x1, x2 ≥ 0.

Solution. Given problem derive as

min f(x) = 2x1x
−3
2 + 4x−1

1 x−2
2 +

32

3
x1x2

such that 0.1x−1
1 x22 = 1

x1, x2 ≥ 0.

110 UNIT 16.

Dual problem:

max f(y) =

(
2

y1

)y1 (4

y2

)y2 (32

3y3

)y3 (0.1

y4

)y4

(y4)
y4

such that

y1 + y2 + y3 = 1

y1 − y2 + y3 − y4 = 0

−3y1 − 2y2 + y3 + 2y4 = 0

Expressing each of the variable in the objective function in terms of y1, we get

max f(y1) =

(
2

y1

)y1
(

4

1− 4
3y1

)1− 4
3
y1 (

32

y1

) 1
3
y1

(0.1)
8
3
y1−1

where

y2 = 1− 4

3
y1

y3 =
y1
3

y4 =
8

3
y1 − 1

Taking log both sides of f(y1) and differentiating with respect to y1, we have,

F (y1) = log f(y1)

= y1 log

(
2

y1

)
+

{
1−

(
4

3

)
y1

}
log 4− log

(
1− 4

3
y1

)
y1
3
{log 32− log y1}+

(
8

3
y1 − 1

)
log(0.1)

Now,

dF

dy1
= log

(
2

y1

)
+ 2−

(
16

3

)
y1 + log

(
32

y1

)
+

8

3
log(0.1) = 0

⇒ y1 = 0.662

The values of the other variables are

y1 = 0.662, y2 = 0.217, y3 = 0.221, y4 = 0.766

Using the relation yj =
cjuj
f∗(x)

we obtain

y1 =
c1u1
f∗(x)

=
2x1x

−1
2

f∗(x)

y2 =
c2u2
f∗(x)

=
4x−1

1 x−1
2

f∗(x)

y3 =
c3u3
f∗(x)

=
32x1x2
3f∗(x)

y4 =
c4u4
f∗(x)

=
x−1
1 x22
f∗(x)

■

16.1. CONSTRAINT GEOMETRIC PROGRAMMING PROBLEM 111

Exercise 16.1.2. Solve the following NLPP by G.P.

1.

min f(x) = 5x1x
−1
2 x23 + x−2

1 x−1
2 + 10x22 + 2x−1

1 x2x
−2
3

x1, x2, x3 ≥ 0

Answer: x1 = 1.26, x2 = 0.41, x3 = 0.59 and min f(x) = 10.28

2.

min f(x) = 2x1 + 4x2 +
10

x1x2
x1, x2 ≥ 0

Answer: x1 = 14.1, x2 = 23 and min f(x) = 112.9

3.

min z =
3x1
x2

+
x22
x1

+ x21x2

such that
1

4
x21x

−1
2 +

1

9
x2x1 = 1

2

(
1

x21

)
+ 4

(
x2
x21

)
= 2

x1, x2 ≥ 0.

Unit 17

Course Structure

• Inventory Control/Problem/Model

• The Economic Order Quantity (EOQ) model without shortage

17.1 Inventory Control/Problem/Model

17.1.1 Production Management

In our daily lives, we observe that a small retailer knows roughly the demand of his customers in a month or
a week or a day, and accordingly places orders on the wholesaler to meet the demand of his customer. But
this is not the case with a manager of a big departmental store or a big retailer because the stocking in such
cased depends upon various factors namely demand, time of ordering, lag between orders and actual receives
etc. So, the real problem is to have a compromise between over stocking and under stocking. The study of
such type of problems is known as material management or production management or inventory control. In
broad sense, inventory may be defined as the stock of goods, commodities or other economic resources that
are stored or reserved in order to ensure smooth and efficient running of business affairs. The inventory may
be kept in any of the following forms:

(i) Raw-material inventory

(ii) Working process inventory

(iii) Finished good inventory

(iv) Inventory also includes furniture, machinery etc.

The term inventory may be classified in two main categories, viz.

(1) Direct Inventory

(2) Indirect Inventory

Indirect inventory includes those items which are necessarily required for manufacturing but do not become
the component of finished products like oil, grease, lubricants, petrol, office materials, etc.

112

17.1. INVENTORY CONTROL/PROBLEM/MODEL 113

17.1.2 Inventory Decisions

Inventory Decision

Flow much to order? When to order?

Demand Supply Fixed order system Fixed period system

Deterministic Probabilistic

Rate of supply Lead time

Instanteneous Gradual Deterministic Probabilistic

Lead time: Time between placing an order an actual received.

17.1.3 Inventory related cost:

(1) Holding Cost (C1 or Cn): The cost associated with carrying or holding the goods in stock is known as
holding cost or carrying cost, which is usually denoted by C1 per unit of goods per unit time.

(2) Shortage or stockout cost (C2 or Cs): The penalty cost which is incurred as a result of running out of
stock or shortage is known as shortage or stockout cost. It is usually denoted by C2 per unit of goods
for a specified period. This cost arises due to shortage of goods, sales may be lost, goodwill may be lost
and so on.

(3) Set up or ordering cost (C3 or C0): This includes the fixed cost associated with obtaining goods during
placing of an order or purchasing or manufacturing or setting up a machinery before starting production.
It is usually denoted by C3 or C0 per production run (cycle).

17.1.4 Why inventory is maintained?

Mathematically the problem of maintaining the inventory arises due to the fact that if a person decides to
have a large stock, his holding cost C1 increases but his shortage cost C2 and set up cost C3 decrease. On
the other hand if he has small stock, his holding cost C1 decreases but shortage cost C2 and set up cost C3

increase. Similarly, if he decides to order very frequently, the ordering cost increases when the other cost
may decrease. So, it becomes necessary to have a compromise between over stocking and under stocking by
making optimum decision by controlling value of some variables.

17.1.5 Variables in Inventory Problems

(i) Controlled variable: q, t

(ii) Uncontrolled variable: C1, C2, C3, Demand (R), Lead time.

114 UNIT 17.

17.1.6 Some Notations

C1 = Holding cost per quantity per unit time.

C2 = Shortage cost per quantity per unit time.

C3 = Set up cost per order.

R = Demand rate.

K = Production rate.

t = Scheduling time period which is variable.

tp = Prescribed time period.

D = Total demand or annual demand.

q = Quantity already present in the beginning.

L = Lead time.

17.2 The Economic Order Quantity (EOQ) model without shortage

17.2.1 Model I(a): Economic lot size model with uniform demand

Assumptions:

(i) Demand is uniform at a rate R quantity units per unit time.

(ii) Lead time is zero.

(iii) Production rate is infinite, i.e., instantaneous.

(iv) Shortages are not allowed.

Inventory level

q = Rt

t t
Time

Let each production cycle be made at fixed interval t and therefore the quantity q already present in the
beginning should be

q = Rt, (17.2.1)

where R is a demand rate. Since, the stock in small time dt is Rt dt, therefore, the stock in total time t will be

t∫
0

R t dt =
1

2
Rt2 =

1

2
qt.

17.2. THE ECONOMIC ORDER QUANTITY (EOQ) MODEL WITHOUT SHORTAGE 115

Thus,

The cost of holding inventory per production run = C1
1

2
qt = C1

1

2
Rt2 (17.2.2)

The set up cost = C3 per production run for interval t.

Total cost =
1

2
C1Rt2 + C3 (17.2.3)

Therefore, total average cost is given by

C(t) =
1
2C1Rt2 + C3

t
=

1

2
C1Rt+

C3

t
(Cost Equation) (17.2.4)

The condition of minimum or maximum of C(t),

d

dt

[
C(t)

]
= 0

⇒ 1

2
C1R− C3

t2
= 0

⇒ t∗ =

√
2C3

C1R
(17.2.5)

Also,
d2

dt2
C(t) =

2C3

t3
, which is obviously positive for the value of t∗. Hence, C(t) is minimum for optimum

time interval t∗ and optimum quantity to be produced or ordered at each interval t∗ is given by

q∗ = Rt∗ = R

√
2C3

C1R
=

√
2C3R

C1
(17.2.6)

which is called optimal lost size formula and the corresponding minimum cost

C∗
min =

1

2
RC1

√
2C3

C1R
+ C3

√
C1R

2C3

=

√
C1C3R

2
+

√
C1C3R

2

=
√
2C1C3R per unit time.

Note 17.2.1. The cost equation (17.2.4) can also be written as

C(q) =
1

2
C1q + C3

R

q
where q = Rt.

17.2.2 Model I(b): Economic lot size with different rates of demand in different cycles

In model I(a), the total demand D is prescribed over the total period T instead of demand rate being constant
for each production cycle, that is rate of demand being different in different production cycles.

Let q be the fixed quantity produced in each production cycle. Since, D is the total demand prescribed
over the time period T , the number of production cycle will be n = D/q. Also, let the total time period
T = t1 + t2 + t3 + · · ·+ tn. Obviously, the carrying cost for the period T will be(

1

2
qt1

)
C1 +

(
1

2
qt2

)
C1 + · · ·+

(
1

2
qtn

)
C1 =

1

2
C1q(t1 + t2 + · · ·+ tn) =

1

2
C1qT

116 UNIT 17.

Set up cost will be equal to
D

q
C3. Thus, we obtain the cost equation for period T .

C(q) =
1

2
C1qT +

D

q
C3

Inventory level

q

t t
Time

t t

T

qt qt qt qt

1 2 3 n

n321
1
2

1
2

1
2

1
2

For minimum cost

dC(q)

dq
= 0

⇒ 1

2
C1T − C3

q2
D = 0

⇒ q∗ =

√
2C3

(
D
T

)
C1

Also,
d2C

dq2
=

2C3D

q3
> 0, which minimizes the total cost C(q) and the corresponding minimum value will be

Cmin =
1

2
C1T

√
2C3

(
D
T

)
C1

+ C3D

√
C1

2C3

(
D
T

)
=

√
C1C3TD

2
+

√
C1C3TD

2

=
√

2C1C3DT

Hence, the minimum total average cost will be

Cmin =

√
2C1C3DT

T

=

√
2C1C3D

T

Note 17.2.2. Here we observed that the fixed demand rate R in model I(a) is replaced by the average demand
rate D/T .

17.2. THE ECONOMIC ORDER QUANTITY (EOQ) MODEL WITHOUT SHORTAGE 117

Example 17.2.3. You have to supply your customer 100 units of a certain product every Monday. You
obtained the product from a local supplier at Rs. 60 per unit. The cost of ordering and transportation from the
supplier is Rs. 150 per order. The cost of carrying inventory is estimated at 15% per year of the cost of the
product carried.

(i) Describe graphically the inventory system.

(ii) Find the lot size which will minimize the cost of the system.

(iii) How frequently should order be placed?

(iv) Determine the number of orders.

(v) Determine the optimum cost.

Solution. Here

R = 100 units/week.

C3 = 150 per order.

C1 = Rs.
15× 60

100× 52
per unit per week

= Rs.
9

52

(i)

C(t) = 60R+
1

2
C1Rt+

C3

t
.

(ii)

q∗ =

√
2C3R

C1

=

√
2× 150× 100× 52

9
.

= 416 units

(iii)

t∗ =
q∗

R
=

416

100
= 4.16 weeks

(iv)

η =
R

q∗
=

100

416
orders per week

(v)

Cmin = 60R+
√
2C1C3R

= (60× 100) +

√
2× 9

52
× 150× 100

= 6000 + 72

= Rs. 6072

■

118 UNIT 17.

Example 17.2.4. An aircraft company uses rebate at an approximate customer rate of 2500 kg per year. Each
unit costs Rs. 30 per kg and the company personal estimate that it cost Rs. 130 to place an order and that
the carrying cost of inventory is 10% per year. How frequently should orders be placed? Also determine the
optimum size of each order.

Solution. Here

R = 2500 kg per year.

C3 = Rs. 130

C1 = Cost of each unit × inventory carrying cost

= Rs. 30× 1

30
= Rs. 3 per unit per year

q∗ =

√
2C3R

C1

=

√
2× 130× 2500

3
= 466 units

∴ t∗ =
q∗

R
=

466

2500
= 0.18 year = 0.18× 12 months = 2.16 months

■

17.2.3 Model I(c): Economic lot size with finite rate of Replenishment (finite production)
[EPQ model]

Some Notations:

C1 = Holding cost per unit item per unit time.

R = Demand rate.

K = Production rate is finite, uniform and greater than R.

t = interval between production cycle.

q = Rt

In this model, each production cycle time t consists of two parts: t1 and t2, where

(i) t1 is the period during which the stock is growing up at a rate of (K −R) items per unit time.

(ii) t2 is the period during which there is supply but there is only a constant demand at the rate of R.

It is evident from the graphical situation (see fig. 17.1) that

t1 =
Q

K −R
and t2 =

Q

R

t = t1 + t2

=
Q

K −R
+

Q

R

=
QK

R(K −R)

17.2. THE ECONOMIC ORDER QUANTITY (EOQ) MODEL WITHOUT SHORTAGE 119

Inventory level

t t
Time

1 2

t

K-
R Q

R

K-R
Q

R
Q

Figure 17.1

which gives

Q =
K −R

K
Rt

=
K −R

K
q [∵ q = Rt]

Now, Holding cost for the time period t is
1

2
C1Qt and the set up cost for period t is C3.

∴ The total average cost is

C(t) =
1
2C1Qt+ C3

t

C(q) =
1

2
C1

(
K −R

K

)
q + C3

R

q
[∵ q = Rt] (17.2.7)

For optimum value of q, we have

dC

dq
= 0

⇒ 1

2

(
1− R

K

)
C1 −

C3R

q2
= 0

⇒ q =

√
2C3RK

C1(K −R)
=

√
2C3R

C1

(
1− R

K

)

Now,
d2C

dq2
=

2C3R

q3
> 0

∴ q∗ =

√
2C3R

C1

(
1− R

K

) (optimal lot size)

and t∗ =
q∗

R
=

√
2C3

C1R
(
1− R

K

)

120 UNIT 17.

and the corresponding minimum total average cost

Cmin =

√
2C1

(
1− R

K

)
C3R

Note 17.2.5. 1. If K = R, Cmin = 0, which implies that there will be no carrying cost and set up cost.

2. If K → ∞, i.e., production rate is infinite, then this model becomes exactly same as Model I(a).

Example 17.2.6. A contractor has to supply 10,000 bearings per day to an auto-mobile manufacturer. He
finds that when he starts a production run, he can produce 25,000 bearings per day. The cost of holding a
bearing in stock for one year is 20 paisa and set up cost of a production run is Rs. 180. How frequently (time)
should production run be made?

Solution.

R = 10000 bearings per day

K = 25000 bearing per day

C1 = Rs.
0.20

365
per bearing per day

= Rs. 0.0005 per bearing per day.

C3 = Rs. 180 per run.

∴ t∗ =

√
2× 180

0.0005× 10000
× 3

5
= 0.3 day

■

Unit 18

Course Structure

• Model II(a): EOQ model with constant rate of demand scheduling time constant.

• Model II(b): EOQ model with constant rate of demand scheduling time variable.

• Model II(c): EPQ model with shortages.

18.1 Model II(a) : EOQ model with constant rate of demand scheduling time
constant

Model II is the extension of Model I allowing shortages.

Inventory level

tp

O

A

B

C

Dq
p

z

Stock

Shortage

R
z

z
Rtp

Time

121

122 UNIT 18.

Some Notations:

C1 = Holding cost

C2 = Shortage cost

R = Demand rate

tp = Scheduling time period is constant

qp = Fixed lot size (Rtp)

z = Order level to which the inventory raised in the beginning of each scheduling period.

Here z is the variable. Production rate is infinite. Lead Time is zero.

In this model, we can easily observe that the inventory carrying cost C1 and also the shortage cost C2 will
be involved only when 0 ≤ z ≤ qp.

Holding cost per unit time = C1(∆OAB)/tp

=
C1

tp

(
1

2
· z · z

R

)
=

1

2

z2C1

Rtp
(∵ qp = Rtp)

Shortage cost per unit time = C2(∆BDC)/tp

=
C2

tp

(
1

2
·BD ·DC

)
=

C2

tp

[
1

2
(tp −

z

R
)(qp − z)

]
=

1

2

C2

qp
(qp − z)2

Total average cost is C(z) =
1

2

z2C1

qp
+

1

2

C2

qp
(qp − z)2 +

C3

tp

Note 18.1.1. Since, the set up cost C3 and period tp are constant, the average set up cost
C3

tp
also being

constant, will be considered in the cost equation.

Now

dC

dz
=

1

2
· C1

qp
· 2z + 1

2

C2

qp
2(qp − z)(−1) = 0

⇒ z =
C2

C1 + C2
qp =

C2

C1 + C2
Rtp.

d2C

dz2
=

C1

qp
+

C2

qp
=

C1 + C2

qp
> 0.

∴ z∗ =
C2

C1 + C2
Rtp

Cmin =
C1C2

2(C1 + C2)
Rtp.

18.2. MODEL II(B) : EOQ MODEL WITH CONSTANT RATE OF DEMAND SCHEDULING TIME VARIABLE123

18.2 Model II(b) : EOQ model with constant rate of demand scheduling time
variable

Assumptions:

(i) R is the demand rate.

(ii) Production is instantaneous.

(iii) q = Rt.

(iv) t is the scheduling time period which is variable.

(v) z is the order level.

(vi) Lead time is zero.

Formulate the model. Show that the optimal order quantity per run which minimizes the total cost is

q =

√
2RC3(C1 + C2)

C1C2

Since, all the assumptions in this model are same as in Model II(a), except with the difference that the schedul-

ing time period t is not constant here, so, it now becomes important to consider the average set up cost
C3

t
in

the cost equation.

Thus the cost equation becomes

C(z, t) =
C1z

2

2Rt
+

1

2

C2

Rt
(Rt− z)2 +

C3

t
.

For the optimization,
∂C

∂z
= 0 and

∂C

∂t
= 0 which gives

1

t

(
2C1z

2R
− 2C3

2R
(Rt− z)

)
= 0

∴ z =
C2Rt

C1 + C2

Now

− 1

t2

(
C1z

2

2R
+

C2

2R
(Rt− z)2 + C3

)
+

1

t

(
0 +

C2

2R
2(Rt− z) + 0

)
= 0

⇒ − 1

t2

(
C1z

2

2R
+

C2

2R
(Rt− z)2 + C3

)
+

C2

t
(Rt− z) = 0

Multiplying this equation by 2Rt2 and simplifying we get,

−(C1 + C2)z
2 + C2R

2t2 = 2RC3

124 UNIT 18.

Substituting the value of z in the given equation, we have

− R2t2C2
2

C1 + C2
+ C2R

2t2 = 2RC3

⇒ C2R
2t2
(
1− C2

C1 + C2

)
= 2RC3

⇒ C2R
2t2
(

C1

C1 + C2

)
= 2RC3

⇒ t =

√
2C3(C1 + C2)

RC1C2

For minimum cost, we may further verify that

∂2C

∂t2
· ∂

2C

∂z2
−
(
∂2C

∂t∂z

)2

> 0

and
∂2C

∂t2
> 0

∂2C

∂z2
> 0

Hence

t∗ =

√
2C3(C1 + C2

RC1C2

q∗ = Rt∗ = R

√
2C3(C1 + C2)

RC1C2

=

√
2RC3(C1 + C2)

C1C2
(EOW/lot size)

Cmin =
C1

2Rt∗

(
C2Rt∗

C1 + C2

)2

+
1

2

C2

Rt∗

(
Rt∗ − C2Rt∗

C1 + C2

)2

+
C3

t∗

=
C1C

2
2R

2

2(C1 + C2)2Rt∗
t∗2 +

1

2

C2

Rt∗

(
C1Rt∗

C1 + C2

)2

+
C3

t∗

=
C1C262

2(C1 + C2)2
(Rt∗) +

C2C
2
1

2(C1 + C2)2
(Rt∗) +

C3

t∗

=
1

2

C1C2

(C1 + C2)2
(C1 + C2)(Rt∗) +

C3

t∗

=
1

2

C1C2

(C1 + C2)

√
2RC3(C1 + C2)

C1C2
+ C3

√
RC1C2

2C3(C1 + C2)

=

√
C1C2RC3

2(C1 + C3
+

√
RC1C2C3

2(C1 + C2)

= 2

√
RC1C2C3

2(C1 + C2)

=

√
2C1C3R× C2

C1 + C2

=
√
2C1C3R

√
C2

C1 + C2

18.3. MODEL II(C) : EPQ MODEL WITH SHORTAGES 125

Further, it is interesting to note that the minimum cost is less than that already given by Model I(a)
√
2C1C3R.

(Draw figure as like Model II(a) replaced by t).

18.3 Model II(c) : EPQ model with shortages

The production lot size model with shortage.
Assumptions:

Inventory level

O

A

B

D
Time

C E

F

Q

Q

t t

t t
1 2

3 4

1

2

K-
R

Q1
K-R

Q1
R

R

(i) R is the demand rate.

(ii) Lead time is zero.

(iii) Production rate (K) is finite, K > R.

(iv) Inventory carrying cost C1 = IP (For EPQ), P = Finite production cost.

(v) Shortages are allowed and backlogged.

(vi) Shortage cost is Rs. C2 per quantity unit per unit time.

(vii) Set up cost is Rs. C3 per order or per set up.

Holding Cost = C1 ×∆OAC = C1 ×
1

2
Q1(t1 + t2).

Shortage Cost = C2

(
1

2
Q2(t3 + t4)

)
and Set up cost C3.

126 UNIT 18.

Thus, the total average cost,

C =
1
2C1Q1(t1 + t2) +

1
2C2Q2(t3 + t4) + C3

t1 + t2 + t3 + t4
(18.3.1)

t1 =
Q1

K −R
, t2 =

Q1

R

=
Rt2

K −R
, Q1 = Rt2.

Again,

Q2 = Rt3, t4 =
Q2

K −R
.

Q2 = (K −R)t4 =
Rt3

K −R
.

Finally,

q = Rt = R(t1 + t2 + t3 + t4)

= R

(
Rt2

K −R
+ t2 + t3 +

Rt3
K −R

)
=

(t2 + t3)KR

K −R

C =

1
2

{
C1(Rt2)

(
Rt2
K−R + t2

)
+ C3Rt3

(
t3 +

Rt3
K−R

)}
+ C3

Rt2
K−R + t2 + t3 +

Rt3
K−R

=

1
2

{
C1t22RK
K−R +

C2t23RK
K−R

}
+ C3

(t2 + t3)
(
1 + R

K−R

)
=

1
2(C1t

2
2 + C2t

2
3)
(

RK
K−R

)
+ C3

(t2 + t3)
(

K
K−R

)
=

1
2(C1t

2
2 + C2t

2
3)RK + C3(K −R)

K(t2 + t3)
.

This is a function of t2 and t3 C(t2, t3)

∂C

∂t2
= 0,

∂C

∂t3
= 0,

t∗2 =

√
2C3C2(1−R/K)

(R(C1 + C2)C1
, q∗ =

√
2RC3(C1 + C2)

(C1C2

(
1

1−R/K

)

t∗3 =

√
2C3C1(1−R/K)

(R(C1 + C2)C2
, Cmin =

√
2RC1C2C3(1−R/K)

C1 + C2

C =
1
2(C1t

2
2 + C2t

2
3)RK + C3(K −R)

K(t2 + t3)
.

18.3. MODEL II(C) : EPQ MODEL WITH SHORTAGES 127

Now,

∂C

∂t2
= 0.

⇒
K(t2 + t3)

[
1
2C1 × 2t2

]
RK −

[
1
2(C1t

2
2 + C2t

2
3)RK + C3(K −R)

]
K

K2(t2 + t3)2
= 0

⇒ K(t2 + t3) · C1t2RK −
[
1

2
(C1t

2
2 + C2t

2
3)RK + C3(K −R)

]
K = 0

⇒ C1t
2
2RK2 + C1t2t3RK2 − 1

2
C1t

2
2RK2 − 1

2
C2t

2
3RK2 − C3K(K −R) = 0

⇒ 1

2
C1t

2
2RK2 + C1t2t3RK2 − 1

2
C2t

2
3RK2 − C3K(K −R) = 0

⇒ 1

2
C1t

2
2RK2 + C1t2t3RK2 − 1

2
C2t

2
3RK2 = C3K(K −R)

⇒ 1

2
RK2(C1t

2
2 + 2C1t2t3 − C2t

2
3) = C3K(K −R)

⇒ C1t
2
2 + 2C1t2t3 − C2t

2
3 =

2C3(1−R/K)

R

⇒ C1t
2
2 + 2C1t2t3 + C1t

2
3 − C1t

2
3 − C2t

2
3 =

2C3(1−R/K)

R

⇒ C1(t2 + t3)
2 − t23(C1 + C2) =

2C3(1−R/K)

R

⇒ C1(t2 + t3)
2 =

2C3(1−R/K)

R
+ t23(C1 + C2)

⇒ (t2 + t3)
2 =

2C3(1−R/K)

RC1
+

t23(C1 + C2)

C1

⇒ t2 + t3 =

√
2C3(1−R/K)

RC1
+

t23(C1 + C2)

C1
.

Also,

K(t2 + t3)

[
1

2
× C2 × 2C3

]
RK −

[
1

2
(C1t

2
2 + C2t

2
3)RK + C3(K −R)

]
K = 0

⇒ C2t2t3RK2 + C2t
2
3RK2 − 1

2
C1t

2
2RK2 − 1

2
C2t

2
3RK2 − C3(K −R)K = 0

⇒ 1

2
C2t

2
3RK2 + C2t2t3RK2 − 1

2
C1t

2
2RK2 = C3(K −R)K

⇒ C2t
2
3 + 2C2t2t3 + C2t

2
2 − (C1 + C2)t

2
2 =

2C3(1−R/K)

R

⇒ C2(t2 + t3)
2 − (C1 + C2)t

2
2 =

2C3(1−R/K)

R
.

128 UNIT 18.

Now,

C1(t2 + t3)
2 − (C1 + C2)t

2
3 =

2C3(1−R/K)

R

C2(t2 + t3)
2 − (C1 + C2)t

2
2 =

2C3(1−R/K)

R
⇒ C1(t2 + t3)

2 − (C1 + C2)t
2
3 = C2(t2 + t3)

2 − (C1 + C2)t
2
2

⇒ C1(t2 + t3)
2 − C2(t2 + t3)

2 = (C1 + C2)t
2
3 − (C1 + C2)t

2
2

⇒ (t2 + t3)
2(C1 − C2) = (C1 + C2)(t

2
3 − t22)

⇒ (t2 + t3)
2(C1 − C2) = (C1 + C2)(t3 − t2)(t3 + t2)

⇒ (t2 + t3)(C1 − C2) = (C1 + C2)(t3 − t2)

⇒ C1t2 − C2t2 + C1t3 − C2t3 = C1t3 + C2t3 − C1t2 − C2t2

⇒ 2C1t2 = 2C2t3

⇒ 2C1t2 = 2C2t3

⇒ t2 =
C2

C1
t3

Thus,

C2(t2 + t3)
2 − (C1 + C2)t

2
2 =

2C3(1−R/K)

R

⇒ C2

(
C2

C1
t3 + t3

)2

− (C1 + C2)

(
C2

C1
t3

)2

=
2C3(1−R/K)

R

⇒ C2

(
C2

C1
+ 1

)2

t23 − (C1 + C2)
C2
2

C2
1

t23 =
2C3(1−R/K)

R

⇒ C2(C2 + C1)
2

C2
1

t23 −
(C1 + C2)C

2
2

C2
1

t23 =
2C3(1−R/K)

R

⇒ t23
C2
1

(C1 + C2)
[
C2(C1 + C2)− C2

2

]
=

2C3(1−R/K)

R

⇒ t23(C1 + C2)

C2
1

C1C2 =
2C3(1−R/K)

R

⇒ t23(C1 + C2)

C1
C2 =

2C3(1−R/K)

R

⇒ t23 =
2C1C3(1−R/K)

R(C1 + C2)C2

⇒ t∗3 =

√
2C1C3(1−R/K)

R(C1 + C2)C2
.

18.3. MODEL II(C) : EPQ MODEL WITH SHORTAGES 129

Now,

t∗2 =
C2

C1
t∗3

=
C2

C1

√
2C1C3(1−R/K)

R(C1 + C2)C2

=

√
2C1C3(1−R/K)C2

2

C2
1R(C1 + C2)C2

=

√
2C2C3(1−R/K)

R(C1 + C2)C1
.

Now,

q∗ =
KR

K −R

[√
2C2C3(1−R/K)

R(C1 + C2)C1
+

√
2C1C3(1−R/K)

R(C1 + C2)C2

]

=
R

(1−R/K)

[√
2C3(1−R/K)

R(C1 + C2)

{√
C2

C1
+

√
C1

C2

}]

=

√
2C3

R(C1 + C2)(1−R/K)
× (C1 + C2)R√

C1C2

=

√
2C3(C1 + C2)2R2

R(C1 + C2)C1C2(1−R/K)

=

√
2RC3(C1 + C2)

C1C2(1−R/K)
=

√
2RC3(C1 + C2)

C1C2

(
1

1−R/K

)
.

So,

Cmin =
1
2(C1t

∗2
2 + C2t

∗2
3)RK + C3(K −R)

K(t∗2 + t∗3)

=

1
2

[
2C1C2C3(1−R/K)

R(C1+C2)C1
+ 2C1C2C3(1−R/K)

R(C1+C2)C2
+ C3(K −R)

]
K
(√

2C3(1−R/K)
R(C1+C2)

· (C1+C2)√
C1C2

)
=

[
C2C3(1−R/K)

R(C1+C2)
+ C1C3(1−R/K)

R(C1+C2)
+ C3(K−R)

2

]
K
√

2C3(1−K/R)(C1+C2)
RC1C2

=
2C2C3(1−R/K) + 2C1C3(1−R/K) + C3K(1−R/K)R(C1 + C2)

K
√

2C3(1−R/K)(C1+C2)
RC1C2

.

Example 18.3.1. The demand of an item is uniform at a rate of 25 units per month. The fixed cost is Rs. 15
each time a production run is made (Setup cost). The production cost if Rs. 1 per item and inventory carrying
cost is Rs. 0.30 per item per month. If the shortage cost is Rs. 1.50 per item per month, determine how often
to make a production run and of what size it should be?

130 UNIT 18.

Solution. We have,

R = 25 units per month

C3 = Rs. 15 per run

I = Rs. 0.30 per item per month. (Inventory carrying cost)

C2 = Rs. 1.50 per item per month

P = Rs. 1 per item.

Thus,
C1 = Rs. 0.30 per item per month.

Here, the demand of an item is uniform. So,

q∗ =

√
2RC3(C1 + C2)

C1C2
=

√
2× 25× 15× (0.30 + 1.50)

0.30× 1.50)
≈ 54 units.

and

t∗ =

√
2C3(C1 + C2)

RC1C2
=

√
2× 15× (0.30 + 1.50)

25× 0.30× 1.50
= 2.19 months.

■

Unit 19

Course Structure

• Model III: Multi-item inventory model

19.1 Model III: Multi-item inventory model

So far, we have considered each item separately but if there exists a relationship among the items under some
limitations, then it is not possible to consider them separately. After constructing the cost equation in such
models, we use the method of Lagrange’s multiplier to minimize the cost. We consider the problem with the
following assumptions

1. n is the number of items to be considered and no lead time.

2. R1i is the uniform demand rate for the ith item (i = 1, 2, . . . , n).

3. C1i is the holding cost of the ith item

4. Shortages are not allowed

5. C3i is the setup cost for the ith item

6. qi is the total quantity to be produced of the ith item.

Now, proceeding exactly as in the model I(a), we get,

Ci(t) =
1

2
C1iRit+

C3i

t
,

or, Ci(qi) =
1

2
C1iqi +

C3iRi

qi
(19.1.1)

Then total cost

C =
n∑

i=1

{
1

2
C1iqi +

C3iRi

qi

}
(19.1.2)

131

132 UNIT 19.

To determine the optimum value of qi, we have

∂C

∂qi
= 0

⇒ 1

2
C1i −

C3iRi

q2i
= 0

⇒ qi =

√
2c3iRi

C1i
.

Thus,
∂2C

∂q2i
> 0, ∀ qi.

The total cost is minimum. Hence, the optimum cost of

q∗i =

√
2C3iRi

C1i
, (i = 1, 2, . . . , n) (19.1.3)

We now proceed to consider the effect of limitations, which are,

1. limitation on investment

2. limitation on stock unit

3. limitation on warehouse floor space

19.1.1 Model III(a): Limitation on Investment

In this case, there is an upper limit M (in Rs.) on the amount to be invested on inventory. Let C4i be the unit
price of the ith item. Then

n∑
i=1

C4iqi ≤ M (19.1.4)

Now, our problem is to minimize the total cost C given by equation (19.1.2) subject to the constraint (19.1.4).
In this situation, two cases may arise.

Case I: When
n∑

i=1

C4iqi ≤ M and q∗i =

√
2C3iRi

C1i
.

In this case, there is no difficulty and hence q∗i is the optimal solution.

Case II: When
n∑

i=1

C4iqi > M and q∗i =

√
2C3iRi

C1i
.

In this case, q∗i are not required optimal solutions. Thus, we shall use the Lagrange’s multiplier tech-
nique.

L =

n∑
i=1

(
1

2
C1iqi +

C3iRi

qi

)
+ λ

(
n∑

i=1

C4iqi −M

)
.

Here, λ is the Lagrangian multiplier.

19.1. MODEL III: MULTI-ITEM INVENTORY MODEL 133

The necessary condition

∂L

∂qi
= 0 (i = 1, 2, . . . , n)

∂L

∂λ
= 0

⇒ 1

2
C1i −

C3iRi

q2i
+ λC4i = 0, and C4iqi −M = 0

⇒ q∗i =

√
2C3iRi

C1i + 2λC4i
and C4iq

∗
i = M.

q∗i depends on λ. λ can be found by trial and error method. By trying positive successive values of
λ, the values of λ∗ should result in simultaneous value of q∗i satisfying the given constraint by equality
sense.

Example 19.1.1. Consider a shop producing three items, the items are produced in lots. The demand rate for
each item is constant and can be assumed to be deterministic. No back order (shortages) are allowed. The
following data are given below.

Item 1 2 3
H.C 20 20 20
S.C 50 40 60

Cost per unit item 6 7 5
Yearly demand rate 10,000 12,000 7,500

Determine approximately the EOQ when the total value of average inventory levels of three items if Rs.
1,000.

Solution.

q∗1 =

√
2C31R

C11
=

√
2× 50× 10, 000

20
= 100

√
5 ≈ 223

q∗2 = 40
√
30 ≈ 216

q∗3 = 150
√
2 ≈ 210.

Since the average optimal inventory at any time is q∗i /2, the investment over the average inventory is obtained
by replacing qi by q∗i /2, that is,

n∑
i=1

C4i

(
1

2
q∗i

)
= Rs.

(
6× 223

2
+ 7× 216

2
+ 5× 210

2

)
= Rs. 1950.

We observe that the amount of Rs. 1950 is greater than the upper limit of Rs. 1000. Thus, we try to find the
suitable value of λ by trial and error method for computing q∗i .

If we put λ = 4, we get

q∗1 =

√
2× 50× 10, 000

20 + 2× 4× 6
= 121

q∗2 = 112

q∗3 = 123.

134 UNIT 19.

Cost of average inventory = 6× 121

2
+ 7× 112

2
+ 5× 123

2
= Rs. 1112.50.

Again, if we put λ = 5, then

q∗1 = 111

q∗2 = 102

q∗3 = 113.

and
Corresponding cost = Rs. 972.50

which is less than Rs. 1000.

From this, we conclude that, the most suitable value of λ lies between 4 and 5.

4 5

972.5

1000

1112.5

To find the most suitable value of λ, we draw a graph between cost and the value of λ as shown in the figure.
This graph indicates that λ = 4.7 is the most suitable value corresponding to which the cost of inventory is
Rs. 999.5, which is sufficiently close to Rs. 1000. Hence, for λ = 4.7, we obtain

q∗1 = 114

q∗2 = 105

q∗3 = 116.

■

19.1.2 Model III(b): Limitation on inventory

In this case, the upper limit of average number of all units in stock is N (say). Hence we have, since the
average number of units at any time is qi/2.

Min C =
n∑

i=1

(
1

2
C1iqi +

C3iRi

qi

)

subject to
1

2

n∑
i=1

qi ≤ N.

Here also, two cases arise.

Case I:
1

2

n∑
i=1

qi ≤ N and q∗i =

√
2C3iRi

C1i
, there is no difficulty and the optimum values of q∗i .

19.1. MODEL III: MULTI-ITEM INVENTORY MODEL 135

Case II:
1

2

n∑
i=1

qi > N , then q∗i are not the required values. So, we use Lagrange’s multiplier technique. Here,

Lagrangian function

L =
n∑

i=1

(
1

2
C1iqi +

C3iRi

qi

)
+ λ

(
1

2

n∑
i=1

qi −N

)
where λ > 0 is a Lagrangian multiplier.

For the minimum value of L, the necessary conditions are

∂L

∂qi
=

1

2
C1i −

C3iRi

q2i
+

λ

2
= 0

∂L

∂λ
=

1

2

n∑
i=1

qi −N = 0, i = 1, 2, . . . , n.

Solving, we get

q∗i =

√
2C3iRi

C1i + λ

1

2

n∑
i=1

qi = N.

To obtain the value of q∗i , we obtain the value of λ by successive trial and error method and satisfying
the given constraint in equality sign.

Example 19.1.2. A company producing three items have a limited storage space of 750 items of all types in
average. Determine the optimal production quantity for each item separately when the following information
is given

Product 1 2 3
H.S(Rs.) 0.05 0.02 0.04
S.C(Rs.) 50 40 60

D.R(per unit) 100 120 75

Solution. We have

q∗1 = 447

q∗2 = 693

q∗3 = 464.

The total average inventory is =
1

2
(447 + 693 + 464) = 802 units,

which is greater than 750 units per year. Thus, we have to find the value of the parameter λ by trial and error
method.

From these, we observe that the average inventory level is less than the available amount of items. So we
try for some other values of λ,

λ = 0.004, 0.003, 0.002, etc.

136 UNIT 19.

For λ = 0.002,

q∗1 = 428

q∗2 = 628

q∗3 = 444

Average inventory level =
1

2
(428 + 628 + 444) = 750,

which is equivalent to the given amount of average inventory. Hence, the optimal solutions are

q∗1 = 428

q∗2 = 628

q∗3 = 444.

For λ = 0.004,

q∗1 =

√
2× 50× 100

0.05 + 0.004
= 430

q∗2 =

√
2× 40× 120

0.02 + 0.004
= 632

q∗1 =

√
2× 60× 75

0.04 + 0.004
= 452

Average inventory level =
1

2
(430 + 632 + 452) = 757.

For λ = 0.003,

q∗1 =

√
2× 50× 100

0.05 + 0.003
= 434

q∗2 =

√
2× 40× 120

0.02 + 0.003
= 646

q∗1 =

√
2× 60× 75

0.04 + 0.003
= 457

Average inventory level =
1

2
(434 + 646 + 457) = 768.5.

■

19.1.3 Model III(c): Limitation on floor space

A = The maximum storage area available for the n items.

ai = Storage area required per unit of the ith item.

Thus, the total storage requirement constraint becomes

n∑
i=1

aiqi ≤ A, qi ≥ 0.

19.1. MODEL III: MULTI-ITEM INVENTORY MODEL 137

Hence, our problem becomes,

Min C =
n∑

i=1

(
1

2
C1iqi +

C3iRi

qi

)
,

Subject to
n∑

i=1

aiqi ≤ A.

qi ≥ 0.

Case I: If
n∑

i=1

aiqi ≤ A, then q∗i =

√
2C3iRi

C1i
. Here we have no difficulty. Hence q∗i is the optimal solution.

Case II: If
n∑

i=1

aiqi > A, then the optimal value q∗i are not the required value. So we use the Lagrange’s multi-

plier technique. The Lagrangain function is

L =
n∑

i=1

(
1

2
C1iqi +

C3iRi

qi

)
+ λ

(
n∑

i=1

aiqi −A

)

where λ > 0 is a Lagrangian multiplier.

The necessary conditions for minimum value of L are

∂L

∂qi
= 0,

∂L

∂λ
= 0.

Then, solving we have

q∗i =

√
2C3iRi

C1i + 2λai
, i = 1, 2, . . . , n, and

n∑
i=1

aiq
∗
i = A.

The second equation implies that q∗i must satisfy the storage constraint in equality sense. The determi-
nation of λ by usual trial and error method automatically gives the optimal value of q∗i .

Unit 20

Course Structure

• Model IV: Deterministic inventory model with price breaks of quantity discount

• Probabilistic Inventory Model

20.1 Model IV: Deterministic inventory model with price breaks of quantity
discount

Notations:

P = Cost per item of producing.

I = Unit price per unit item.

C3 = Setup cost.

R = demand rate.

t = Interval between placing orders.

q = Quantity order.

Assumptions:

1. Demand rate R is constant.

2. Demand is both fixed and known.

3. No shortages are to be permitted.

4. The variable cost associated with the purchasing process.

Determine:

1. How often should be purchased (t∗)?

2. How many units should be purchased at any time (q∗)?

138

20.1. MODEL IV: DETERMINISTIC INVENTORY MODEL WITH PRICE BREAKS OF QUANTITY DISCOUNT139

We have,
q = Rt (20.1.1)

The number of inventories will be given by
1

2
qt.

1

2
qt =

1

2
q
q

R
=

q2

R
(20.1.2)

The number of lot of inventories will be given by

1

2

qt

q
=

1

2

q2

R

q
=

1

2

q

R
(20.1.3)

C3 = Setup Cost.

qP = the purchasing cost of q units.

C3

(
1

2

q

R

)
I = Cost associated with setup of inventory for period t.

qP

(
1

2

q

R

)
I = Cost associated with purchase of inventory for period t.

Therefore, total cost for period t is given by,

C3 + qP + C3
1

2

q

R
I + qP · 1

2

q

R
I

Hence, average cost per unit time,

C(q) =
1

t

(
C3 + qP + C3

1

2

q

R
I + qP · 1

2

q

R
I

)
C(q) =

C3R

q
+ pR+

C3I

2
+

qPI

2

(
since t =

q

R

)
But the term

1

2
C3I being constant throughout the model, it maybe neglected for the purpose of minimization.

Therefore,

C(q) =
C3R

q
+ PR+

qPI

2
(20.1.4)

For minimum value of C(q),
d

dq
C(q) = 0.

d

dq
C(q) = 0

⇒ −C3R

q2
+

1

2
PI = 0

⇒ q∗ =

√
2C3R

IP
(20.1.5)

Therefore,
C(q∗) =

√
2C3RPI + PR (20.1.6)

140 UNIT 20.

Purchase Cost (P) per item Range of quantity
P1 1 ≤ q1 ≤ b
P2 q2 ≥ b

Table 20.1

20.1.1 Model IV(a): Purchase inventory model with one price break

Consider the table 20.1
where b is the quantity at and beyond which the quantity discount applies. Obviously, P2 < P1. For any

purchase quantity q1 in the range 1 ≤ q1 < b,

C(q1) =
C3R

q1
+ P1R+

P1q1I

2
(20.1.7)

Similarly, for q2,

C(q2) =
C3R

q2
+ P2R+

P2q2I

2
(20.1.8)

Rule I Compute q∗2 , using (20.1.5). If q2 ≥ b, then the optimum lot size will be q∗2 .

Rule II If, q2 < b, then the quantity discount no longer applies to the purchase quantity q∗2 . Compute q∗1 , then
compare C(q∗1) and C(b) given by,

C(q∗1) =
C3R

q∗1
+ P1R+

P1q
∗
1I

2

C(b) =
C3R

b
+

P2Ib

2
+ P2R

It shows that,
C3R

b
+ P2R <

C3R

q∗1
+ P1R [since q∗1 < b and P2 < P1]

However,
P2Ib

2
may or may not be less than

P1Iq
∗
1

2
. Hence, we must compare the total cost. So, q∗ = b.

Example 20.1.1. Find the optimum order quantity for a product for which the price breaks are as follows:

Quantity discount Unit Cost (Rs.)
0 ≤ q1 < 500 10.00
500 ≤ q2 9.25

The monthly demand for a product is 200 units, the cost of storage is 2% of unit cost and cost of ordering
is Rs. 350.

Solution.

R = 200 units per month

I = Rs. 0.02

C3 = Rs. 350

P1 = Rs. 10.00

P2 = Rs. 9.25

q∗2 =

√
2C3R

P2I
=

√
2× 350× 200

9.25× 0.02
= 870 units > b = 500.

20.1. MODEL IV: DETERMINISTIC INVENTORY MODEL WITH PRICE BREAKS OF QUANTITY DISCOUNT141

Since q∗2 = 870 lies within the range q2 ≥ 500, hence the optimum purchase quantity will be q∗2 = 870
units. ■

Example 20.1.2. Same as the previous example with C3 = Rs. 100. Thus,

q∗2 =

√
2C3R

P2I
=

√
2× 100× 200

9.25× 0.02
= 447 units < b = 500.

Then compare C(447) with C(500), that is, the optimum cost of procuring the least quantity which will entitle
or price break, that is,

C(q∗) = C(447) = Rs. 2090.42

C(500) = Rs. 1937.25.

Since C(500)<C(447), the optimum purchase quantity will be q∗ = b = 500.

20.1.2 Model IV(b): Purchase inventory model with two price breaks

Purchase Cost P per item Range of quantity
P1 1 ≤ q1 < b1
P2 b1 ≤ q22 < b2
P3 b2 ≤ q3

Table 20.2

Consider the table 20.2, where b1 and b2 are the quantities which determine the price breaks. The working
rule is as follows:

Step 1: Compute q∗3 and compare with b2.

(i) If q∗3 ≥ b2, then the optimum purchase quantity is q∗3 .

(ii) If q∗3 < b2, then go to step 2.

Step 2: Compute q∗2 , since q∗3 < b2 and q∗2 is also less than b2 because q∗1 < q∗2 < . . . < q∗n in general. Thus,
there are only two possibilities when q∗2 < b2, that is, either q∗2 ≥ b1 or q∗2 < b1.

(i) When q∗2 < b2 but ≥ b1, then proceed as in case of one price- break only, that is, compare the cost
C(q∗2) and C(b2) to obtain the optimum purchase quantity.
The quantity with least cost will naturally be optimum.

(ii) If q∗2 < b2 and b1, then go to step 3.

Step 3: If q∗2 < b2 (and b1 both). Then compute q∗1 which will satisfy the inequality q∗1 < b1. In this case,
compare the cost C(q∗1) with C(b1) and C(b2) both to determine the optimum purchase quantity.

Example 20.1.3. Find the optimum order quantity for a product for which the price breaks are in table 20.3.
The monthly demand for a product is 200 units. The cost of storage is 2% of the unit cost. Cost of ordering is
Rs. 350.

142 UNIT 20.

Quantity : 0 ≤ q1 < 500 500 ≤ q2 < 750 750 ≤ q3
Unit Price(Rs.) : 10.00 9.25 8.75

Table 20.3

Solution.

R = 200 units per month

I = Rs. 0.02

C3 = Rs. 350

P1 = Rs. 10.00

P2 = Rs. 9.25

P3 = Rs. 8.75

b1 = 500

b2 = 750

q∗3 =

√
2× 350× 200

8.75× 0.02
= 894 > 750.

Thus, the optimum purchase quantity will be q∗ = 894.
If we choose C3 = Rs. 100, and all are the same, then

q∗3 =

√
2× 100× 200

8.75× 0.02
= 478 < 750.

Step 2:

q∗2 =

√
2× 100× 200

9.25× 0.02
= 465 < 500.

Again, we compute

q∗1 =

√
2× 100× 200

10× 0.02
= 447 < 500.

Then, we compare C(447) with C(500) and C(750). Now,

C(447) = Rs. 2090.42, C(500) = Rs. 1937.25, C(750) = Rs. 1843.29

Thus, C(750) < C(500) < C(q∗1). This shows that, the optimum purchase quantity is q∗ = 750 units. ■

20.2 Probabilistic Inventory Model

20.2.1 Instantaneous demand, no set up cost

Discrete Case

Find the optimum order level z which minimizes the total expected cost under the following assumptions

(i) t is the constant interval between orders. (daily, monthly, weekly, etc.)

(ii) z is the stock at the beginning of each period t

20.2. PROBABILISTIC INVENTORY MODEL 143

(iii) d is the estimated (random) demand at a discontinuous rate with probability P(d)

(iv) C1 is holding cost

(v) C2 is shortage cost

(vi) lead time zero

(vii) demand is instantaneous.

d

z

Shortage
No Stock

d - z

Time

InventoryInventory

z

d

Stock

No Shortage
z - d

d < z
Time

(Over Supply)

In the model with instantaneous demand, it is assumed that the total demand is fulfilled at the beginning of
the period. Thus, depending on the demanded amount the inventory position may either be positive (surplus
or stock) or negative (shortage).

Case I: d ≤ z

Holding cost = (z − d)C1, for d ≤ z

= C1 × 0, for d > z (no stock)

Case II: d > z

Shortage cost = C2 × 0 for d ≤ z (no shortage)

= (d− z)C2 for d > z

To get the expected cost, we have to multiply the cost by given probability P (d). Further to get the total
expected cost we must sum over all the expected cost. So, the total expected cost per unit time is,

C (z) =

z∑
d=0

(z − d)C1P (d) +

∞∑
d=z+1

C1 · 0 · P (d) +

z∑
d=0

C2 · 0 · P (d) +

∞∑
d=z+1

C2 · (d− z)P (d)

=
z∑

d=0

(z − d)C1P (d) +
∞∑

d=z+1

C2 · (d− z)P (d) (20.2.1)

144 UNIT 20.

For the minimum of C(z), the following must be satisfied:

∆C (z − 1) < 0 < ∆C (z) (finite difference Calculus) (20.2.2)

But, we can difference (20.2.1) under the summation sign for d = z + 1, the following condition satisfied

C1{(z + 1)− d}P (d) = C2(d− (z + 1))P (d).

Now,

∆C(z) = C1

z∑
d=0

[((z + 1)− d)− (z − d)]P (d) + C2

∞∑
d=z+1

[(d− (z + 1))− (d− z)]P (d)

= C1

z∑
d=0

P (d)− C2

∞∑
d=z+1

P (d)

= C1

z∑
d=0

P (d)− C2

[∞∑
d=0

P (d)−
z∑

d=0

P (d)

]

= (C1 + C2)
z∑

d=0

P (d)− C2.

[
since

∞∑
d=0

P (d) = 1

]

∆C(z) > 0

⇒ (C1 + C2)
z∑

d=0

P (d)− C2 > 0

⇒
z∑

d=0

P (d) >
C2

C1 + C2
(20.2.3)

Similarly,

∆C(z − 1) < 0
z−1∑
d=0

P (d) <
C2

C1 + C2
.

Combining, we get
z−1∑
d=0

P (d) <
C2

C1 + C2
<

z∑
d=0

P (d). (20.2.4)

Example 20.2.1. (Newspaper boy problem) A newspaper boy buys papers for Rs. 2.60 each and sells
them for Rs. 3.60 each. He can not return unsold newspapers. Daily demand has the following probability
distribution (Table 20.4).

No. of customers : 23 24 25 26 27 28 29 30 31 32
Probability : 0.01 0.03 0.06 0.10 0.20 0.25 0.15 0.10 0.05 0.05

Table 20.4

If each day, demand is independent of the previous days, how many papers should be ordered each day?

20.2. PROBABILISTIC INVENTORY MODEL 145

Solution. Let z=The number of newspapers ordered per day and d=demand that is, the number that could be
sold per day if z ≥ d, P (d)=The probability that the demand will be equal to on a randomly selected day,

C1 = Cost per newspaper

C2 = Selling price per newspaper.

If the demand d exceeds z, his profit would become equal to (C2−C1)z, and no newspaper will be let unsold.
On the other hand, if d does not exceed z, his profit becomes equal to (C2 − C1)d − (z − d)C1, where
(C2 − C1)d is for the sold papers and (z − d)C1 for the unsold papers. Then the expected net profit per day
becomes equal to

P (z) =
z∑

d=0

(C2d− C1z)P (d) +
∞∑

d=z+1

(C2 − C1)zP (d).

where, (C2d− C1z)P (d) is for d ≤ z and (C2 − C1)zP (d) for d > z.
Using finite difference calculus, we know that the condition for maximum value of P (z) is

∆P (z − 1) > 0 > ∆P (z).

∆P (z) =
z∑

d=0

[{C2d− C1(z + 1)} − (C2d− C1z)]P (d) +
∞∑

d=z+1

(C2 − C1){(z + 1)− z}P (d)

= −C1

z∑
d=0

P (d) + (C2 − C1)
∞∑

d=z+1

P (d)

= −C1

z∑
d=0

P (d) + (C2 − C1)

{ ∞∑
d=0

P (d)−
z∑

d=0

P (d)

}

= −C1

z∑
d=0

P (d) + (C2 − C1)

{
1−

z∑
d=0

P (d)

}

= −C2

z∑
d=0

P (d) + (C2 − C1).

For, maximum of P (z),

∆P (z) < 0

or, −C2

z∑
d=0

P (d) + (C2 − C1) < 0

or,
z∑

d=0

P (d) >
C2 − C1

C2
. (20.2.5)

Similarly, we can find,
z−1∑
d=0

P (d) <
C2 − C1

C2
.

Combining, we get,
z∑

d=0

P (d) >
C2 − C1

C2
>

z−1∑
d=0

P (d).

146 UNIT 20.

In this problem, C1 = Rs. 2.60, C2 = Rs. 3.60. The lower limit for demand d is 23 and upper limit is 32.
Therefore, substituting these values in (20.2.5), we get,

z∑
d=0

P (d) >
3.60− 2.60

3.60
= 0.28.

Now, we can easily verify that this inequality holds for z = 27, that is,

27∑
d=23

P (d) = P (23) + P (24) + P (25) + P (26) + P (27)

= 0.01 + 0.03 + 0.06 + 0.10 + 0.20 = 0.40 > 0.28.

Similarly,
26∑

d=23

P (d) = 0.20 < 0.28.

■

Continuous Case

This model is same as the previous model except that the stock levels are now assumed to be continuous quan-
tities. So, instead of probability P (d), we shall have f(x)dx and in place of summation, we take integration,
where f(x) is the pdf (probability density function). The cost equation for this model becomes

C(z) = C1

∫ z

0
(z − x)f(x)dx+ C2

∫ ∞

z
(x− z)f(x)dx. (20.2.6)

The optimal value of z is obtained by equating z to zero the first derivative of c(z), that is,
dC

dz
= 0.

Differentiating (20.2.6), we get,

dC

dz
= C1

∫ z

0
(1− 0)f(x)dx+ C1

[
(z − x)f(x)

dx

dz

]z
0

+ C2

∫ ∞

z
(0− 1)f(x)dx+ C2

[
(x− z)f(x)

dx

dz

]∞
z

= C1

∫ z

0
f(x)dx− C2

∫ ∞

0
f(x)dx

= C1

∫ z

0
f(x)dx− C2

[
1−

∫ z

0
f(x)dx

]
= (C1 + C2)

∫ z

0
f(x)dx− C2.

Thus,

dC

dz
= 0

⇒ (C1 + C2)

∫ z

0
f(x)dx− C2

⇒
∫ z

0
f(x)dx =

C2

C1 + C2

d2C

dz2
= (C1 + C2)

[
f(x)

dx

dz

]z
0

= (C1 + C2)f(x) > 0.

Hence, we can get optimum value of z satisfying the sufficient condition for which the total expected cost C
is minimum.

20.2. PROBABILISTIC INVENTORY MODEL 147

Example 20.2.2. A baking company sells cake by the kg weight, it makes a profit of Rs 5.00 per kg on each
kg sold on the day it is baked. It disposes off all cakes not sold on the day it is baked at a loss of Rs. 1.20 per
kg. If demand is known to be rectangular between 2000 and 3000 kgs, determine the optimal daily amount
baked.

Solution.

C1 = profit per kg cake

C2 = loss per kg cake for unsold cake

x = Demand which is continuous with pdf f(x),

where, ∫ x2

x1

f(x)dx = the probability of an order within x1 to x2.

and z=stock level.
Then two cases arise.

Case I: If x ≤ z, then clearly the demand x is satisfied and unsold (z− x) quantities are returned with a loss of
C2 per kg, so, profit is C1x and loss is C2(z − x). Hence the net profit becomes, C1x − C2(z − x) =
(C1 + C2)x− C2z.

Case II: If x > z, then the net profit becomes C1z. Thus, the total expected profit is given by

P (z) =

∫ z

x1

[(C1 + C2)x− C2z] f(x)dx+

∫ x2

z
C1zf(x)dx = P1(z) + P2(z) (say).

Now, for the maximum value of P (z), we must have,

dP (z)

dz
=

d

dz
P1(z) +

d

dz
P2(z) = 0

Now,

P1(z) =

∫ z

x1

[(C1 + C2)x− C2z] f(x)dx

d

dz
P1(z) =

∫ z

x1

(0− C2)f(x)dx+

[
{(C1 + C2)x− C2z}f(x)

dx

dz

]z
x1

= −C2

∫ z

x1

f(x)dx+ {(C1 + C2)x− C2z}f(x)

= −C2

∫ z

x1

f(x)dx+ C1zf(z).

Similarly,

d

dz
P2(z) =

∫ x2

z
C1f(x)dx+

[
C1zf(z)

dx

dz

]x2

z

= C1

∫ x2

z
f(x)dx− C1zf(z).

148 UNIT 20.

Hence, we have,

dP (z)

dz
=

[
−C2

∫ z

x1

f(x)dx+ C1zf(z)

]
+

[
C1

∫ x2

z
C1f(x)dx− C1zf(z)

]
= 0

⇒ −C2

∫ z

x1

f(x)dx+ C1

∫ x2

z
f(x)dx = 0

⇒ −C2

∫ z

x1

f(x)dx+ C1

{∫ x2

x1

f(x)dx−
∫ z

x1

f(x)dx

}
= 0

⇒ −(C1 + C2)

∫ z

x1

f(x)dx+ C1 = 0

⇒
∫ z

x1

f(x)dx =
C1

C1 + C2
(20.2.7)

Also,
d2P (z)

dz2
= −(C1 + C2)f(z) < 0

satisfies the sufficient condition of maximum of P (z).

In this problem,
C1 = Rs. 5.00, C2 = Rs. 1.20, x1 = 2000, x2 = 3000.

f(x) =
1

x2 − x1
=

1

1000
.

Substituting these values in equation (20.2.7), we have∫ z

2000

1

1000
dx =

5

5 + 1.20
= 0.807

⇒ 1

1000
(z − 2000) = 0.807

⇒ z = 2807 kg.

■

References

1. An Introduction to Information Theory - F. M. Reza.

2. Operations Research : An Introduction - P. K. Gupta and D.S. Hira.

3. Graph Theory with Applications to Engineering and Computer Science - N. Deo.

4. Operations Research - K. Swarup, P. K. Gupta and Man Mohan.

5. Coding and Information Theory - Steven Roman.

6. Coding Theory, A First Course - San Ling r choaping Xing.

7. Introduction to Coding Theory - J. H. Van Lint

8. The Theory of Error Correcting Codes - Mac William and Sloane.

9. Information and Coding Theory - Grenth A. Jones and J. Marry Jones.

10. Information Theory, Coding and Cryptography - Ranjan Bose.

149

	Director's Message
	
	Introduction
	Reliability
	MTTF in terms of failure density

	
	Linearly Increasing Hazard
	System Reliability
	Redundancy

	
	Introduction
	Fundamental theorem of information theory
	Origination

	Measure of information and characterisation
	Units of information

	
	Entropy (Shannon's Definition)
	Units of entropy
	Properties of entropy function

	
	Joint, conditional and relative entropies
	Mutual information
	Conditional mutual information

	
	Conditional relative entropy
	Convex and Concave functions
	Jensen's Inequality

	Channel Capacity
	Redundancy

	
	Introduction
	Expected or average length of a code
	Uniquely decodable (separable) code

	
	Shannon-Fano Encoding Procedure for Binary code:

	
	Construction of Haffman binary code
	Construction of Haffman D ary code (D>2)

	
	Error correcting codes
	Construction of linear codes
	Standard form of parity check matrix:
	Hamming Code:
	Cyclic Code

	
	Golay Code
	The Golay Code

	BCH Code
	Introduction
	The BCH Code
	The Generator Polynomial
	The Error Locator Polynomial and the Elementary Symmetric Functions
	Example: 3 Error Correcting BCH Code

	
	Reed-Muller Codes
	Introduction to Reed-Muller Codes
	First-Order RM Codes
	Encoding
	Decoding

	
	Introduction
	Powers of Stochastic Matrices

	
	Ergodic Matrix

	
	Geometric Programming
	General form of G.P (Unconstrained G.P) (Primal Problem)
	Necessary conditions for optimality

	
	Constraint Geometric Programming Problem

	
	Inventory Control/Problem/Model
	Production Management
	Inventory Decisions
	Inventory related cost:
	Why inventory is maintained?
	Variables in Inventory Problems
	Some Notations

	The Economic Order Quantity (EOQ) model without shortage
	Model I(a): Economic lot size model with uniform demand
	Model I(b): Economic lot size with different rates of demand in different cycles
	Model I(c): Economic lot size with finite rate of Replenishment (finite production) [EPQ model]

	
	Model II(a) : EOQ model with constant rate of demand scheduling time constant
	Model II(b) : EOQ model with constant rate of demand scheduling time variable
	Model II(c) : EPQ model with shortages

	
	Model III: Multi-item inventory model
	Model III(a): Limitation on Investment
	Model III(b): Limitation on inventory
	Model III(c): Limitation on floor space

	
	Model IV: Deterministic inventory model with price breaks of quantity discount
	Model IV(a): Purchase inventory model with one price break
	Model IV(b): Purchase inventory model with two price breaks

	Probabilistic Inventory Model
	Instantaneous demand, no set up cost

	References

