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Unit 1

Conjugate Space

Course Structure

* Conjugate Space: Definition of conjugate space, determination of conjugate spaces of R", [, for 1 <
p < oo. Representation theorem for bounded linear functionals on C'la, b] (Statement only). Some idea
about the spaces BV [a, b] and Bla,b]. Determination of conjugate spaces of C|a, b] and some other
finite and infinite dimensional spaces.

1.1 Introduction

Suppose that X and Y be two normed linear spaces over the same scalar field K (= R or C). Then, the
collection B(X,Y") of all bounded linear operators T : X — Y is a linear space under the operations
addition and scalar multiplication defined as follows:

(T1 + TQ)(ZL‘) =T (l‘) + Tg(l’)
and (A\T)(z) =AT'(z), Ve e X, € K.

The zero element in this linear space is the operator 0 such that
0x =0, Vz € X.
It can be shown that B(X,Y) is a normed linear space, where for every T' € B(X,Y),
1T = sup{|[Tz[| : [l=]| <1}.
Further, if Y is a Banach space, then B(X,Y) is also a Banach space.

Definition 1.1.1. Let X be a normed linear space over the scalar field K (= R or C). Then, the space B(X, K)
of all the bounded linear functionals defined on X is called the conjugate space or the dual space of X and is
denoted by X*. Since K is a Banach space under the absolute value norm, it follows that X* = B(X, K) is
a Banach space.



Definition 1.1.2. Let (X, d) and (Y, p) be two metric spaces. If there exist a one-one correspondence between
the elements of X and Y such that the distance between any two elements of X is the same as the distance
between the corresponding elements of Y, then the mapping is called an isometry. In this case, the spaces X
and Y are called isometric spaces.

Definition 1.1.3. Let X and Y be two normed linear spaces over the same scalar field K. Let 7T : X — Y
be a linear operator. 7" is called an isometric isomorphism between X and Y if T is bijective and preserves
norm, i.e., | Tz|| = ||z||, Vo € X. In this case, the spaces X and Y are called isometrically isomorphic.

If a normed linear space X is isometrically isomorphic to a normed linear space Y, then from the stand
point of functional analysis, the spaces X and Y are identical.

Theorem 1.1.4. The conjugate space of R, is R,,.

Proof. We know that R,, is the collection of all n-tuples of real numbers. Let e; = (1,0,...,0), es =
(0,1,0,...,0),--- ,e, = (0,0,...,0,1) be a basis of R,,.

Then, any element x = (21,2, ...,T,) € R,, can be written as

n
T = Z TLep.
k=1

Let f € R}.. Then

n n

fle) = mnfler) =) wpau
k=1 k=1

where a, = f(eg),k=1,2,...,n.

Thus, for each f € R, we obtain an element A = (A1, A2, ..., A,) € R,,. This defines an operator
T:R, — R,
givenby T(f) = A feR and A= (A, a,...,\,) €ER,,
provided for any z = (21,22, ...,2,) € Ry, f(2) = D0 TrAk-

We now show that 7 is a bijective linear operator which preserves norm.

We first show that 7" is linear. Let f, g € R’ and « be a scalar. Let
T(f) =b= (b1,ba,...,bp)
and T(g) =c=(c1,¢2,...,Cpn).
If 2 = (x1,29,...,2,) € Ry, then

fl@)=> apbp and g(z) =) wpck.
k=1

k=1
Now

f(z) +g(x)
= Z rrbr + Z TpCk
k=1 k=1

= Z xk(bk + Ck)
k=1

(f +9)(x)

2



and

(af)(x) = af(x)

Therefore,

This shows that 7" is linear.

Next, we show that 7" is injective. Let f,g € R* and T'(f) = T(g9) = ¢ = (c1,¢2, ..., ¢n).

If 2 = (x1,x2,...,2,) € Ry, then

n n
flz) = Zwkck and g¢(z) = Zxkck
k=1 k=1

thatis f(z) = g(z). This shows that f = g and hence 7' is injective.

We now show that 7' is surjective.

Let A = (A1, A2, ..., \p) € R,,. We define a functional f on RR,, as follows:

If v = (z1,22,...,2,) € Ry, then
n
k=1

It can be easily shown that f is linear. By Cauchy Schwarz inequality

f@)] =D adel <> ol
=1 k=1

(Se) )

] <;|Ak2>

IN

N

(1.1.1)

This means that f is bounded and hence f € R} . It is clear from the definition of f that T'(f) = \. Hence, T’

is surjective.

Next we show that 7" preserves norm. Let f € RY and T'(f) = A, where A := (A1, Mg, ...

Then, f(z) =Y, zpA; forz = (z1, 22,...,2,) € Ry,

JAn) € Ry,



Proceeding similarly as (1.1.1), we obtain
1
n 2
[f@)] < [ (Z!Akl2>
k=1
n >
. f(=@)]
k=1

Therefore,

1Al =sup{']f|( ”)' o] # o} < JIAlL (1.12)

Choosing x = A = (A1, A2, ..., \,) We obtain

HfH_ |)\|| (ZM |2> = [IAl- (1.1.3)

Combining (1.1.2) and (1.1.3) we get

[N

L= WA= 1T CHI-

Hence, T preserves norm. Thus, 7' : R¥ — R,, is a bijective linear operator which preserves norm. 71 is
therefore an isometric isomorphism of R}, onto R,,. Hence the conjugate space of R,, is R,,. This proves the
theorem. 0

Note 1.1.5. The linear space C" equipped with the norm given by
1
n 2
|z]2 = (Z |xi|2> L@ = (x1,T,...,2,) €C"
i=1
is a complex Banach space. The space C" is called the n-dimensional unitary space.

Note 1.1.6. The linear space K" (R,, or C,,) is a Banach space with each of the norms

n
el = >l
i=1
and [|z]|cc = max{|x;|:1<i<n}

where x = (1,2, ...,2y) € K™ ||.||1 is called /;-norm and ||.|| is called the sup norm on K™.

Note 1.1.7. It is to be noted that ||.||1, ||.||2 and ||.||s are norms on the linear space K" (RR,, or C,). We now
introduce the general class of norms K™ to which these norms relate.

Let p > 0 be a real number. Define

.l : K* — Rby

n »
lzll, = (Z |5Uip> , &= (21,22, @p) € K™
=1

It is easy to verify that ||.||, for 1 < p < oo actually defines a norm on K. We denote the normed linear
space (K™, [|.[|p) by I#(n).



1 1
Theorem 1.1.8. The conjugate space of [P(n) is {4(n), where 1 < p,q < coand — + — = 1.
P g

Proof. Let (e1,ea,...,6e,) be a natural basis for [P(n). Then, any x = (z1,x9,...,2,) € [P(n) can be
expressed uniquely in the form
n
x = Z Tpek.
k=1

Since [P(n) is a finite dimensional normed linear space, every linear functional on [?(n) is continuous. Thus,
if f is continuous linear functional defined on [?(n), then

f(z) = Zxkf(ek), r = (x1,22,...,2Ty) € P(n).
k=1

Clearly, (f(e1), f(e2),..., f(en)) € l19(n). Thus foreach f € (IP(n))* we obtain an elementu = (f(ey), f(e2), ...

flen)) € 14(n).

This defines an operator 7" : ({P(n))* — 19(n) givenby T'(f) = u, f € (IP(n))*andu = (f(e1), f(e2), ...,
f(en)) € 19(n). It can be easily seen that 7" is linear and bijective.

We now show that T" preserves norm. Since f is bounded, it follows by Holder’s inequality that

n

f@)] < > |ewf(en)l
P

(Z m\p> ' (Z rf<ek>|q> q
k=1 k=1

21l (Z \f(ek)|q>
k=1

IN

q

IN

This implies that

1l = sup{‘f (@) ||x|p¢o}

1]y
< (Z f(ek>|‘Z> (1.1.4)
k=1
= Mullg = 1T(H)llg- (1.L5)
Choosing = z¢ = (A1, A2, ..., Ap) € [P(n), where
_ | f(en)]
)\k = f(ek) ) f(ek) ?é 0

= 0, otherwise.

1 1 1 1
Then ”950||p = (22:1 |Ae[P)r = (22:1 |f(ex)|?)P, since ]*9 + 5 = 1. Also,

n

Flwo) =D Meflex) =Y | f(ex)
k=1

k=1

q.

5



Therefore,

11> b (er ) el

This implies that

1A= Mlullg = 1T (F)llg- (1.1.6)
Combining (1.1.5) and (1.1.6) we get
IFIF= 1T Fllq-
Hence T preserves norm. Thus, 7" is an isometric isomorphism of (I”(n), ||.||,)* onto ({9(n), ||.||;) and hence
the cojugate space of [”(n) is l,(n). This proves the theorem. O

Remark 1.1.9. Note that, if p = 2, then ¢ = 2. Also, [?(n) = R" or C" according as the field K is R or C.
As such, the conjugate space of R™ is R™ and that of C" is C™.

Exercise 1.1.10. 1. Prove that the conjugate space of C™ is C".

2. Prove that the conjugate space of (C", ||.||) is the space (C™, ||.||1).

1.1.1 Schauder Basis

Due to restriction to finite linear combinations, classical vector space bases are not always suitable for the
analysis of infinite dimensional spaces. Therefore, it is natural in some way to consider generalised basic
concepts. In 1927, J. Schauder introduced the notion of Schauder basis in a Banach space, which is defined as
follows.

Definition 1.1.11. Let X be a normed linear space over the scalar K (R or C). A sequence (x,,) in X is called

a Schauder basis for X if ||z,| = 1 forn = 1,2,..., and each x € X can be expressed as © = Z Ty,
n=1

where the series converges in the norm of X, and the scalar «,, are uniquely determined by x.

Example 1.1.12. Forn € N, lete,, = (0,0,...,1,0,...) € K". Then (e,) is a Schauder basis of [,,, 1 <
p < oo and ¢g. We call (e,,) the unit vector of 1, and ¢ respectively.

Remark 1.1.13. Assume that X is a Banach space and (e,,) is a basis of X. Then,
i) (ey) is linearly independent.
ii) span{e, : n € N} is dense in X, in particular X is separable.

iii) every element z is uniquely determined by the sequence A(cv,) so that z = Z Qpén.

n=1
Remark 1.1.14. The space [, is not separable and therefore has no Schauder basis. Every orthonormal basis
in a separable Hilbert space is a Schauder basis.

Remark 1.1.15. Each basis in a Banach space is a Schauder basis.

Definition 1.1.16 (Signum Function). If « is a complex number, then

sgna = g, ifa#0
|l
= 0, a=0.

From the above definition, we have the following two properties of signum function.

6



i) Isgn al=0if &« = 0 and Isgn al= 1 if o # 0.

|l
1

1
Theorem 1.1.17. The conjugate space of [, is [, where 1 < p,q < occand — + — = 1.
p q

ii) asgna = 0if = 0 and if a # 0, then asgn & = = |a|.

o0
Proof. Let x = (x,) € [, so that Z |z, [P < oo. Let (e1,e2,...) be a Schauder basis for 1,

n=1
x = (xy) € I, can be written as

oo
r = E TEEL.
k=1

Let f € I;. Then using the linearity and continuity of f, we have

fe) = arfler) =Y wrcu
k=1 k=1
where oy, = f(ex),k=1,2,....

We now define an operator 7" : [ — [, by

T(f) = (0617052, N )

and we show that 7" is an isometric isomorphism of /;; onto /.

First we show that 7" is well-defined. Let x = (51, B2, ..., 0»,0,0,...) € [, where

B = |ak|q_lsgnak, ifl<k<n
= 0, ifk>n.

Then, |5x|P = \ak\p(qfl) = |y

1
9 since — + — = 1.
p q

Also, a0 = ak\ak\qflsgnak = ‘Oék‘q.

B =

1
n P n
Therefore, ||z| = (Z |ﬁk|p> = (Z |ak|q> . Since z = Y __, Brek, we have
k=1

k=1

F@) = Brfler) =Y Brok=> _laxl|.
k=1 k=1 k=1

Now, for all z € [, we have

If@)] < I1f @)z
i, Y Jarl” < |If] <Z!ak!q>
k=1 k=1

Q=

n
ie., (Z |ak|q> < If]l < oo
k=1

. Then,

(1.1.7)



Since the last inequality is true for arbitrary positive integer n, letting n — oo we get

(Z |ozk|q> <[]l < oo. (1.1.8)
k=1

This shows that (ay,) € I, and hence 7" is well-defined.
From (1.1.7) it follows that f = 0if T'(f) = 0 so that Ker T" = {0}. Hence T is one-one.

To prove that 7" is onto, we suppose that (8;) € l,. Define the functional g : [, — K by g(z) =

o
> @B, = () € I Obviously g is linear and
k=1

l9(z)] =

(o.9)
> ziBi
k=1

< Z |2k Bk |
k=1
< (Z mk\p> : <Z rw) q
k=1 k=1

Q=

= [« (i Bqu>

k=1
This shows that g is bounded. Since ej, € [, for k = 1,2, ... we get g(ey) = S, for all k and so T'(g) = (Bx)

and hence T is onto.

Next we show that T" preserves norm. Since T'(f) € l,, from (1.1.7) and (1.1.8) we obtain

1

IT(f)) = (Z lakIQ> < |- (1.1.9)
k=1

To prove the reverse inequality, let us take = € [, so that z = )~ ; zxex. Hence,

flo) = arfler) =Y wpay.
k=1 k=1

Using Holder’s inequality we have

[e.e]

f@) < D |opa

k=1

IN
TGP
Nk

)

ol

LS
N———

S =
x
piNgt

)

o

S
N———

|



Therefore

|/ ()]

]

(Z !ak!‘I> = T(f)]. (1.1.10)
k=1

1l = sup{ :Hx||7é()}

IN

Combining (1.1.9) and (1.1.10) we get
11 = [T CHII-

From the definition of 7" it is clear that 7" is linear.

Therefore T' : I, — [, is an isomorphism. Hence the conjugate space of [, is ;. This proves the
theorem. O

Note 1.1.18. From theorem (1.1.17), we note the following.

i) If x = () € lp and f € [, then f has the unique representation of the form
o0
Fa@) =" apfler).
k=1

ii) The norm of f € [} is given by
1
q

I1£]l = (Zlf(ek)lq>
k=1

Theorem 1.1.19. The conjugate space of I is [ .

1<n<oo
00

Proof. We note that [; = {x = (zp) : Z |zn| < oo} and oo = {x = (xn): sup |zy| < oo}. Let (ey,)

n=1

be a Schauder basis for [;. Then any x = (z,,) € [y can be expressed as © = Zxkek. Let f € []. Then

k=1
using the linearity and continuity of f we have
o0 [e.e]
fl@) =Y afler) =) wpay
k=1 k=1
where o, = f(eg), k = 1,2,... We now define an operator 7" : [} — I by
T(f) = (a1, 0,...) (1.1.11)

and show that 7" is an isometric isomorphism of ] onto l.

First we show that 7" is well-defined. For that, let x = (51, 52, ..., 5n,0,0,...) € [ where

Br = sgnay, ifk=n
= 0, ifk#n.

9



n
Then, ||z|| = |sgnay| = 1. Also, o, [, = a,8gna, = |ay|. Since x = Zﬁkek, we have
k=1

fl@) =Y Brfler) =) Brak = anfy
k=1

k=1
and hence
|f(@)| = law| < [[fIlllz]l = [I£]I
Therefore,
Sup lan| < || £l (1.1.12)

which implies that (o) € lo and hence T is well-defined.
From (1.1.11) it follows that f = 0if T'(f) = 0 so that KerT' = {0}. Hence T is one-one.

To prove that 7" is onto, we suppose that (8;) € ls. Define the functional g : I} — K by g(z) =

o]
Z z Bk, x = (z5,) € l1. Obviously ¢ is linear and

k=1
o0
l9(z)] = Zxkﬁk
k=1
[e.e]
< D |l
k=1
<

{ml?x 5k} Z ||
k=1

{m,gxﬁk} 0

This shows that g is bounded. Since e;, € [ for k = 1,2, ... we get g(ex) = B for all k. So. T'(g) = (Bk)
and hence 7' is onto.

Next we show that 7" preserves norm. Since T'(f) € lo, from (1.1.11) and (1.1.12) we get

sup [ag| = |T(F) < Il (1.1.13)
1<k<oo
[o.¢]
To prove the reverse inequality, let 2 = (x,,) € [; so that z = Z xpey. Hence,
k=1

fla) =) arfler) =) wran.
k=1 k=1

10



So,

|f(@)] = Zxkak
k=1
< Z|$kak\
k=1
< {swlaul} >l
k k=1
— {suwplaul} lal.
k
So,
11 = sup {0 <ot 0
< suplay| = |7(7)]| (1.1.14)

Combining (1.1.15) and (1.1.16) we get || f|| = ||T°(f)||- From the definition of 7', it is clear that 7" is linear.

Therefore, T' : [] — [l is an isomorphism. Hence, the conjugate space of /; is l.,. This proves the
theorem. H

Exercise 1.1.20. Prove that the conjugate space of Cj is ;.

1.1.2 Conjugate Space of C[a,b]

In order to determine the conjugate space of C[a,b], the class of all real valued continuous functions defined
on [a,b] we shall require some results which are note to us.

1.1.3 Functions of Bounded Variation

Let a function f(z) be defined in the closed interval [a,b] and a = zp < 1 <+ < Tf < Tppp < -+ <
x, = b be a partition of [a,b] into a finite number of subintervals [z, x41],k = 0,1,2,--- ;n — 1. If

n—1
V= Z |f(zk41) — f(zk)|, then V is called the variation corresponding to the particular partition. sup{V'}
k=0

is known as the total variation of f(z) on [a, b] and is denoted by Vb (f) or simply by V(f) when there is no
a,

confusion about the interval [a, b] in consideration. If V' (f) < +oo, then the function f(x) is said to be of
bounded variation on [a, b]. The following results are known.

Theorem 1.1.21. If a function f(z) is of bounded variation over [a, b], then it is bounded there.

Theorem 1.1.22. If f(z) and g(z) are of bounded variation over [a, b], then f(z) £ g(x) is also of bounded
variation over [a, b] and

V(f£9) < V() + V(g
if ¢ is a constant then cf is also of bounded variation over [a, b] and
Vief) = lelV(f)-

Theorem 1.1.23. A function f(z) is of bounded variation over [a, b] if and only if it can be expressed as the
difference of two increasing functions.

11



1.1.4 Riemann Stieltjes Integral

Let f(x) and ¢(z) be two bounded functions defined on [a,b] anda = z9 < 21 < -+ < Tp—1 < T, = bbe

n—1
a partition of [a,b]. Let ty41 € [vk, Tky1],k = 0,1,2,--- ;n— 1 and @ = Z (o) [d(zrr1) — d(zk)]-

k=0
Then « is known as the Stieltjes sum. If « tends to a finite limit I as max |21 — x| — 0 and if this limit is

independent of the mode of subdivision of [a, b] and the choice of the points ¢, then the limit I is known as

Riemann Stieltjes integral of f(x) with respect to ¢(z) and is denoted by / f(z)do(z).
a

The following results are known.

Theorem 1.1.24. If fi(z) and f2(x) are integrable on [a, b] with respect to ¢(x) and ¢y, c2 are constants, then
c1 f1(x) + cafo(x) is also integrable on [a, b] w.r.t. ¢(x) and

b b b
/ c1fi(@) + e fo(@)dd(a) = o1 / fi(@)do(z) + e / fol@)do(x).

Theorem 1.1.25. If f(z) is integrable w.r.t. both ¢ (x) and ¢2(x) over [a, b] and ¢, co are constants, then
f(x) is integrable w.r.t ¢1 f1(x) + caf2(x) over [a, b] and

/f dler f1(z) + c2 fo( —Cl/f )do:(x +C2/f )dpa(z).

Theorem 1.1.26. If one of the integrals / f(x)do(x) and / ¢(x)df (z) exists, then the other integral also

exists and

/ f(@)dd(a / o(2)df () = F(D)SB) — F(a)b(a).

b
Theorem 1.1.27. If f(x) is continuous on [a, b] and g(x) is of bounded variation over [a, b], then / f(z)dg(zx)
a

exists and

x)dg(z)| < V(g). sup |f(z)l.

a<x<b

1.1.5 The space BV[a,b]

We consider the set BV[a,b] which contains the class of all real valued functions which are of bounded
variation over [a, b]. We define the sum ¢ = f; + f5 of two elements f1, fo €BV[a,b] by

o(t) = (fi+ f2)(t) = f1(t) + f2(t).
If «v is a scalar then the scalar multiple of the element f €BV[a,b] by « denoted by ¢ = «f is defined by
P(t) = (af)(t) = af(t).

Also the function f(¢) such that f(t) = 0,Vt € [a,b] is the zero element of BV[a,b]. The negative of
f €BV[ablis (—f)(t) = —f(¢). Itis clear that — f €BV[a,b]. We can now easily verify that all the axioms
of a linear space are satisfied. For f €BV[a,b] we define

1= (@)l +V(f)

and verify that the axioms of a norm are satisfied.

12



i) Clearly || f|| > 0. If f(t) = 0,V € [a, b] then obviously || f|| = 0. Conversely, suppose that || f|| = 0.
Then f(a) =0and V(f) =0. Lett € (a,b). Then

f(&) = [+ [fO) = fO) < V(f)=0
ie, f(t) = f(a) and f(t) = f(b)
ie. f(H) = 0,Vt€ab].

i) If «v is a scalar then

lefll = lef(a)l+ V(af)
= |a[f(a)] + la[V(f)
= [elllf(a)] + V()]
= |edlifl;

iii) If f, g €BV[a,b], then

If+gll = [(f+9)(a)l+V(f+9)

[f(a) +g9(a)[ + V(f +9)

[f (@) +lg(a) + V() +V(9)
11+ llgll-

BV[a,b], is therefore, a normed linear space and so a metric space.

IN

1.1.6 The space B[a,b]

Let B[a,b] denotes the class of all bounded real valued functions defined on [a, b]. The sum ¢ = f; + f5 of
two elements f1, fo €B[a,b] and the scalar multiple ¢) = «f of the element f €B[a,b] by the scalar « are
defined by
o(t) = f®)+ f2t)
and(t) = af(t).

The negative — f of an element f €B[a,b] is

The function f(t) such f(t) = 0, V¢t € [a, b] is the zero element of B[a,b].

With these definitions of addition and scalar multiplication it is easy to see that B|a, b] is a real linear space.
For f € Bla, b] we define

If[l = sup |f(t)]-
a<t<b

It may be verified that the axioms of a norm are satisfied. B|a, b], the class of all bounded real valued functions
defined on [a, ] is therefore a metric space where the distance p(f, g) between two elements f, g of B[a, b] is
given by
p(fr9) = Ilf = gll = sup [f(t) = g(D)].
a<t<b

We now show that the convergence in B|a.b] is equivalent to uniform convergence.

13



Let ( f,,) be a sequence of elements of Bla, b] which converges to an element f € Bla, b]. Then p(f,, f) —
0 as n — o0. Let € > 0 be arbitrary. Then there is a positive integer /N such that

o(fn, f) <eifn>N

ie., sup |fn(t) — f(t)| <€ ifn> N
a<t<b
ie., |fn(z) — f(x)] < eVtEla,bl], ifn> N.

This however means that the sequence (f,,(t)) converges uniformly to f(¢) in B|a, b].

Conversely, we suppose that the sequence ( f,(¢)) of bounded functions converges uniformly to the bounded
function f(t) over [a, b]. Let € > 0 be arbitrary. Then there is a positive integer N (depending only on €) such
that

|fu(t) — f(t)] <, if n > N and V¢ € [a, D]

ie., sup |fn(t) — f(t)] <eifn> N
a<t<b

e,  p(fu,f)<eifn>N
ie.,  fo— finBla,b.

Thus convergence in Bla, b] is equivalent to uniform convergence. It is to be noted that Cla, b] is a subspace
of Bla, b].

Theorem 1.1.28. (Riesz Representation Theorem for Cla,b]) Let f € (Cla,b])*, that is, f is continuous
linear functional defined on C'[a, b]. Then there is a function g(¢) €BV[a,b] such that

b
f(a) = / £(t)dg (1), ¥x(t) € Cla,b]

and [ f[| = V(g)-
Proof. The proof of the theorem is out of the scope of this study material. O
To prove the next theorem we shall require some results from real analysis.

Result 1.1.29. Let f(z) be monotone increasing in [a, b] and x¢ € [a, b]. Then

flzo+) = lim+f(x) exists and

T—TQ

f(xzo+) = inf{f(x):zo <z <b}.

Result 1.1.30. If f(x) is increasing in [a, b] and ¢ € [a, b], then

c+h
lim 1/+ F(t)dt = lim f(z) = f(c+0).

h—0 h T—ct

Result 1.1.31. Let f(x) be of bounded variation over [a, b] and ¢ € [a, b]. Then,

c+h
lim 1/ ft)dt = lim f(z) = f(c+0).

h—0 h T—rct
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Proof. Since f(x) is of bounded variation over [a, b], we have

f(z) = o(x) —¥(x)

where both ¢(z) and () are increasing functions on [a, b]. Then,
%%h/ _%%h/ wl)ldt
= hmh/ thmh/ P(t)dt

= Y(c+0)
= f(c—l—()).

Result 1.1.32. Suppose that f(x) is of bounded variation over [a, b] and ¢ € [a, b]. Then,

lim — L[ f(t)dt: lim f(z)= f(c—0).

h—0 h T—rc—

Definition 1.1.33. For f, g €BV[a,b], we define f ~ g if for all z(t) € C[a, b]

b b
[ st = [ g,

It can be easily shown that *~’ is an equivalence relation in BV[a,b].

Lemma 1.1.34. Let f(¢) €BV[a,b] and f ~ 0. Then for any ¢ € [a, b],
fla) = f(b) = flc+0) = f(c=0)
where f(c+0) = x1i>1?+ f(z)and f(c—0) = zlggl_ f(x)

Proof. Since f ~ 0, we have for all z(¢) € C|a, b]

b
/1ﬂwﬁ@):0

Choosing x(t) = 1 we get

b
—/}wo—ﬂw—ﬂ@
ie.f(a) = f(b).

Since f(z) is of bounded variation on [a, b], we have

lim — / f(c+0).

h—0 h

We now show that f(a) = f(c+ 0). The argument to show that this is also equal to f(c — 0) is quite similar
and hence omitted. We consider the function

g(t) = 1l,ifa<t<c
t_
— 1-""Cife<t<ec+h

h
= 0,ifc+h<t<b

15



We note that g(t) is continuous in [a, b]. Then we have
b
0 = [ s
c ct+h b
= [omaw+ [ gwdro+ [ g

c+h
c c+h
:(/ww+/ o()df (1)

c+h
= ﬂ@—ﬂ®+/ a(Odf (1) (1.1.15)

By the formula for integration by parts of Riemann-Stieltjes integral we obtain
[ awao s [T rwaso = st motern - e
1 c+h
lm/ soare) = [ fod- )

) =1
hli%h/

= lim — / f(c+0).

h—0 h

So from (1.1.15) we obtain
Letting h — 0 we obtain

In a similar way we can show that
f(b) = f(c—0).

This proves the lemma. 0

Definition 1.1.35. The function f(¢) €BV[a,b] is called normalised if f(a) = 0 amdtlignJr f(t) = f(to),Vto €
—to

(a,b), i.e., if f is continuous from the right. The collection of all normalised functions of bounded variation
is denoted by NBV[a,b]. It is easy to see that NBV[a,b] is a subspace of BV[a,b].

Lemma 1.1.36. Let f1, fo» € BV[a,b]. If f1, f» are normalised and f; ~ fo, then f1 = fo.
Proof. Since fi ~ fy we have f; — fo ~ 0. So, by lemma (1.1.34) we have
(f1 = f2)(b) = (f1 — f2)(a)

e, fi(b) = f2(b) = fi(a) — fa(a) = 0
i.e., fl(b) = fQ(b)

Further, for any ¢ € (a,b), we have
(fi = f2)(c+0)=(f1 — fo)(a) =

ie,  filc+0)— fa(c+0)=0
ie,  fi(c+0)= fa(c+0).

Since f; and fo are continuous from the right, it follows that fi(c) = fa(c),Ve € (a,b) and hence f1 = fo.
This proves the lemma. 0
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Lemma 1.1.37. Let f(¢) €BV[a,b]. Then there exist a function ¢g(¢) €NBV[a,b] such that

f~gandV(g) <V(f).
Proof. The proof of the lemma is beyond the scope of this study material. O
Theorem 1.1.38. The spaces NBV[a,b] and (C'[a, b])* are isometrically isomorphic.

b
Proof. Let g(t) eNBV[a,b]. For x(t) € Cla,b], let f(x) :/ x(t)dg(t). Let x1(t),z2(t) €C[a,b] and
A1, Ag be scalars. Then ¢

b
FOumL + Aoma) = / Dz (8) + Aowa(t)|dg(?)
b b
~ / 21()dg(t) + Mo / 22(t)dg(t)

= Aif(@1) + Aaf(w2).

This shows that f is linear. Further by theorem 1.1.27

e = |f bx(t)dgm'

< sup |z(1)][.V(g)
a<t<b

V(g)-ll=ll.

Therefore f is bounded and
Il < V(g). (1.1.16)

Thus for every g(t) €ENBV[a,b] we obtain an element f € (Cfa,b])*. This defines an operator

T : NBVia,b] — (C|[a,b])* given by T'(g) = f where g € NBV[a, b] and

b
f(z) = / z(t)dg(t),Vz(t) € Cla,b].

Let g1,92 € NBV]a,b] and A\, Ay be scalars. Further let T'(g1) = f1 and T'(g2) = f2. Then for all
z(t) € Cla,b]

b

filz) = /w(t)dgl(t) and
b

fo(z) = /x(t)dgg(t).

Since

b b b
/ (O dMgr (1) + daga(D)] = A / £()dga(t) + Ao / £(t)dga(t)

Afi(z) + Az fa(w)
= (Afi+ X fo)(2),
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we have

T(Agr+ X2g2) = Aifi+ Xafo
= MT(g1) + AT (g2).

This shows that T is linear. We now show that 7" is one-one.
Let g1,92 € NBV[a,b] and T(g1) = T(g2). Then for all z(t) € Cla, b],

b b
/ £(t)dg (t) = / £(t)dgs ().

This however means that g; ~ g and so by Lemma 1.1.36, g; = go. Thus 7 is one-one.
We now show that 7" is surjective. Let f € (Cla,b])*. Then by Theorem 1.1.28 there is a function
h(t) € BV]a,b] such that

@) = / " e(0)dh(t) Va(t) € Cla, 1]
ie, |If] = vfh). (1.1.17)
By Lemma 1.1.37, there exist a unique g(t) € N BV[a, b] such that
h~gandV(g) <V(h). (1.1.18)

Thus for all z(t) € Cla, b] we obtain

b b
[ atagte) = [ attane) = o).
So, T(g) = f and hence T is surjective. By (1.1.16), (1.1.17) and (1.1.18) we get

Ifl<V(g) < V(h)=|fl

e, [[fll=V(g) = lgla)l+V(g) [since g(a) = 0]
= |9l
e, [Tl = lgll-

This shows that 7" preserves norm. 7', is therefore, an isomorphic isomorphism of N BV [a, b] onto (C|[a, b])*
and so the conjugate space of C|a, b] is NBV[a, b]. This proves the theorem. O
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Unit 2

The weak and weak™ Convergence

Course Structure

* Weak convergence and weak* convergence: Definition, characterization of weak convergence and
weak* convergence, sufficient condition for the equivalence of weak* convergence and weak conver-
gence in the dual space.

We are all familiar with the convergence in norm in normed linear spaces. Now, we shall introduce two new
types of convergence called weak convergence and weak* convergence.

Definition 2.0.1. A sequence () in a normed linear space X is said to be weakly convergent in X, if there
is a point x € X such that
lim f(z,) = f(x)forall f € X*.

n—oo

In this case we write x,, — « and call z as the weak limit of the sequence (z,,).

The convergence in the normed linear space X will now be called strong convergence, that is, y, — y
strongly in X if and only if d(y, y,) — 0, i.e., ||y — yn| — 0 as n — oc.

Theorem 2.0.2. Let z,, — z in a normed linear space X. Then
i) the weak limit x of (zy,) is unique;
ii) every subsequence of (x,,) converges weakly to x;
iii) the sequence (||z,||) is bounded.

Proof. i) Suppose z,, — x and x, — y in X. Then for each f € X* we have

lim f(zn) = f(2)

n—oo

and  lim f(za) = F(y)-

n—oo

Since f(xy,) is a sequence of scalars, its limit is unique. Hence, f(x) = f(y). Since this is true for all
f € X*, we have x = y. Thus the weak limit is unique.
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ii) Since z,, — x in X, for each f € X* we have

lim f($n> = f(l')

n—oo

Since f(z),) is a convergent sequence of scalars, every subsequence f(zy, ) converges for every f € X*
and has the same limit as the sequence. Therefore,

lim f(xn,) = f(x)and hence z,, — .
k—o00

iii) Since z,, — z in X, for each f € X* we have

lim f(z,) = f(z).

n—oo

Since f(z,,) is a convergent sequence of scalars, it is bounded for all f. Hence,
|[f(zn)| < Cf, forall f,
where C' is a positive constant depending on f. We define

Fp,(f) = f(zn),Vf € X*.
Then
[Fo,, ()] = |f(zn)| < Cf Vn.

This shows that for any f € X*, the sequence (F, (f)) is bounded. Since X* is a Banach space, the
principle of uniform boundedness implies that (|| F}, ||) is bounded. Now,

1B = p{w ) # o}
(W@l
p{ £ -IIfII#O}

= [lzall

Thus the sequence (||x,,||) is bounded. This completes the proof.
O

Theorem 2.0.3. In any normed linear space, strong convergence implies weak convergence with the same
limit but not conversely.

Proof. Let (x,,) converges strongly to z. Then
|zn — z|| = 0 as n — oco.

For arbitrary f € X* we have

[flzn) = f(@)] = [flzn —2)|
< [ lllzn — 2|
— 0Oasn — oo.
Therefore, z,, — . ]

The converse is not true as shown by the following example.
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Example 2.0.4. We consider the Schauder basis e; = {1,0,0,...},eo = {0,1,0,...},...1in ly. Letx =
oo
(zn,) € lo such that Z |2, |* < co. Then,

n=1

oo
xr = E Tk €L
k=1

and hence f(x Zl‘kf ex) Zajkak where a, = f(ex),k = 1,2,...and (o) € lo. Since (ay) € lo
k=1
we have «,, — 0 as n —> oo and therefore f(e,) — 0asn — oo.

This shows that e,, — 6 for all f € I5. Now for n # m, |le, — em||> = 2 # 0 and so the sequence (e,,)
cannot converge strongly to any element.
This proves the theorem.

Theorem 2.0.5. In a finite dimensional normed linear space X the notion of strong convergence and weak
convergence are equivalent.

Proof. Since strong convergence implies weak convergence in any normed linear space, it is also true in a
finite dimensional normed linear space. So it is enough if we prove that weak convergence implies strong
convergence in a finite dimensional normed linear space.

Let X be a finite dimensional normed linear space and (z,,) be a sequence of elements in X such that z,, —
xg. Since X is finite dimensional, there exist a finite number of linearly independent elements ey, ea, - - - , e
in X such that x € X can be represented as

r = i1e1 + ageg + -+ - + ageg
where o, ag, - - - , a, are scalars.

Therefore, we can write
T, = agn)el + a;n)eg + -+ oz,(en)ek, n=123,...

(0) (0) (0)

and o = a;’ertay e+ -+ e

We now define functionals f1, fo, - - , fi over X as follows:

If t = aje; + agea + -+ + apeg, € X, then fi(z) = a;,i=1,2,--- k.

Clearly each f; is linear. Since X is finite dimensional, each f; is bounded and so continuous. Hence
fie X*fori=1,2,--- k. Now,

filan) = ol and fi(zo) = "

(n) (0)

Since z,, — 0, we have fi(x,) — fi(xo) and so a;  —oa; asn —oofori=1,2,... k.
Let M = max |le;||,s = 1,2, -,k and € > 0 be arbitrary. Then there exist a positive integer ng such that
€ .
\a(.n) - 0)\ < ——forn>ngandi=1,2,--- k.

)

MK
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Then for n > nyg,

k
lew —aoll = 1D (af” = el
i=1
k
< Z |a§n) a(0)| M
i=1
< €.
Therefore, (x,,) converges strongly to xo. This completes the proof. O

Theorem 2.0.6. In a normed linear space X, z,, — « if and only if
i) the sequence (||zy]|) is bounded and
ii) for every element f of a subset M of X* which is everywhere dense in X*, we have f(z,) — f(x).

Proof. We first assume that x,, — 2. Then (i) follows from (iii) of theorem 2.0.2 and (ii) follows from the
definition of weak convergence.

Next we suppose that 2.0.6 and 2.0.6 hold. We have to show that f(z,,) — f(x) for arbitrary f € X*. Let
¢ > 0 be a number such that ||z, || < ¢ for all n and also ||z|| < ¢. Let f € X* be arbitrary. Since M is
everywhere dense in X*, corresponding to € > 0 there exists f; € M such that

1 = 1l < 5
Since f; € M, by 2.0.6 we have

filen) = f3(x).
So there exist N such that for all n > N

Filen) = fi(@)] < 3

So foralln > N,

[f(@n) = f(2)] < [f(2n) = filzn)l + 1 f5(@n) = fi(@)| + [ f;(2) — f(2)]
€
< M = fillllznll + 5+ 11f5 = flll=l
< —et et
—c+ -+ —.
3¢ 737 3
= €
Since this is true for arbitrary f € X*, it follows that z,, — . This proves the theorem. O

Theorem 2.0.7. Let T € B(X,Y). If z,, = z¢ in X, then T'(2,,) — T(z0) in Y.

Proof. Let K(= R or C) denote the scalar field of X and Y. Let f € Y*. Then clearly T : X — Y and
f Y — K. We define the composite map fT : X — K by (fT)(x) = f(Tx). Let z1,29 € X and
a, B € K. Then

JT(axy + Br2) = f(T(axy + fr2))
f(aT(21) + BT (2))
af(T(x1)) + Bf(T(z2))
= a(fT)(z1) + B(fT)(x2).
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Thus fT is a linear functional. Also

[fT ()]

[f(T(2))]
[T ]

<
< [Tz, v € X.

Therefore f7 is bounded and hence fT' € X*. Since z,, — x¢ in X, for every f € Y*, as fT € X*, by
Theorem 2.0.6 we have

(fT)(xn) = (fT)(0)
ie., f(T(zy) — f(T(0)).
Thus T'(z,,) — T'(z) in Y. This proves the theorem. O

Definition 2.0.8. A sequence (f,,) in X* is said to be weak™* convergent if there is some fy € X* such that
lim f,(z) = fo(z) Vxe X.
n—oo

In this case we write f,, — fo.

Remark 2.0.9. The nomenclature *weak* convergence’ comes from the fact that the dual space of X is
denoted by X*.

Remark 2.0.10. Weak* convergence is just pointwise convergence of the operators f,.
Remark 2.0.11. If we have a subsequence (f,,)nen in X ™, then we can consider three types of convergence
of f, to fo: strong, weak and weak*.

By definition, these are as follows:

i) fn — fo strongly if and only if || f,, — fo|| = 0 as n — co.

i) fo > foifandonly if lim T(f,) = T'(fo) ¥T € X™*.

iii) f, — foifand onlyif lim f,(z) = fo(z) Vz e X.
n—o0
Theorem 2.0.12. Weak* limits are unique.

w*

Proof. Suppose that X is a normed linear space. If possible, let f, —» f and f, —> g in X*. Then by
definition we have

f(z) = lim f(z) = g(z)
n—oo
for all x € X. This implies f = ¢g. Hence weak* limits are unique. This proves the theorem. O

Theorem 2.0.13. In a dual space, strong convergence implies weak* convergence but no conversely.

Proof. Let X be a normed linear space and X* be its dual space. Let (f,,) be a sequence in X* and f,, — f
strongly in X*. Then || f,, — f|| — 0 as n — co. Now forall z € X,

[fulz) = f2)] = |(fn = F)(@)]
[ = Flll]]

<
— (Oasn — oco.

This shows that f, —» f in X*. O
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Weak* convergence not necessarily imply strong convergence as shown by the following example.

Example 2.0.14. Consider the Banach space X = (Cy, ||.||) so that X* = (11, ||.||1). Let f, = (0,0,--- ,0,1,0,---)
where 1 is in the nth place be the nth coordinate functional defined on Cy. If x = (x,,) € Cy, then f,,(x) = xp,.
Therefore f,,(z) — 0 as n — oo for each z € X so that the sequence (f,,) is weak* convergent in X*. But

|| fnll = 1,n € N. Therefore (f,,) is not strongly convergent in X *. This proves the theorem.

Definition 2.0.15. Let X be a normed linear space.

i) A sequence (x,) in X is said to be a weak Cauchy sequence if (f(x,)) is a Cauchy sequence for all
feXr .

ii) The space X is said to be weakly complete if every weak Cauchy sequence in X has a weak limit in X.
Theorem 2.0.16. Let X be a normed linear space. Then the following holds:
i) A weak Cauchy sequence in X is bounded.

it) If (z,,) C X converges weakly to x € X, then ||z|| < liminf ||z, ]|.
n—oo

iii) If X is strongly complete, it need not be weakly complete.

Proof. 1) Let (x,) be a weak Cauchy sequence in X. Then (f(z,)) is a Cauchy sequence in K for all
f € X*. Therefore lim f(z,) exists for each f € X*. This implies that z;, — x. Hence in the view
n—oo

of (iii) of Theorem 2.0.2, the sequence (||z,]|) is bounded.

ii) Since x, — z in X, we have lim f(z,) = f(z),Vf € X*. Now,

n—oo

[f(@)] = lim |f(zn)]

n—oo

< ||| timint [z, |-
n—od
This shows that

sup{[f(2)]: f € X7 |If] =1}

liminf ||z, ]|.
n—o0

]

IN

iii) Consider the Banach space X = (Cy, ||.||s). We show that X is not weakly complete. Let z = (&;) €
oo

Coand y = (1;) € 1. Then f(z) = Zfim implies f(ex) = nk, (en) being the unit vectors in Cj.
=1
Therefore, '

lim f(ex) = lim n = 0.

k—o00 k—o00
Thus (eg) is a weakly Cauchy sequence in Cy.
Let, if possible, e, — xq in Cy for some o = (f?) € Cp. Then f(ex — x9) — 0 as k — oo for all
f € l1. Taking f = e, we see that

1-¢& = 0,vn>1
=& = 1,vn>1.

Thus zo = (1,1,1,---) ¢ Co. Hence (ey) does not converge weakly in Cj. This proves the theorem.
U
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Definition 2.0.17. A subset M of a normed linear space X is said to be a fundamental (or total) set if the
span M is dense in X, i.e., span M = X.

Theorem 2.0.18. Let X be a Banach space and let (f,,) C X* be a sequence. Then ( f,,) is weak* convergent
if and only if

i) the sequence (|| fy||) is bounded; and
ii) the sequence (f,(x)) is Cauchy for each x € M, where M is fundamental subset of X.
Proof. Let f, —> fin X*. Then

li_)m fn(z) = f(x) forallx € X.

This shows that ( f,,(x)) is bounded for all x € X. But X being complete, Principle of Uniform Boundedness
when applied to bounded linear functionals gives that (|| f,,||) is bounded. This proves (i).

Note that (ii) is trivial, since (f,,(x)) is a convergent sequence of scalars for each = € X, in particular, for
reM.

Conversely, suppose that (i) and (ii) hold. Since the sequence (|| f,||) is bounded, there exist a constant ¢
such that || f,,|| < ¢,Vn € N.

Let € > 0 be given. Since span M = X, it follows that for each z € X, there exist a y € span M such that

€
- < .
lz =yl < 5

For y € span M, (ii) implies that the sequence (f,,(y)) is Cauchy. Hence there exist a positive integer N
such that | f,(y) — fm(y)| < é forall n,m > N.

Now for an arbitrary x € X, we have

€
< falllz =yl + 5 + I fmllllz =yl

< €€, €
3 3 3
= ¢Vn,m> N.

This shows that (f,,(z)) is a Cauchy sequence in R. But R being complete, ( f,,(z)) converges to f(x), say,
in R. Further, x is an arbitrary element of X. Therefore,

nh_)rgo fn(z) = f(x), Vo € X.

Thus f,, — f. This proves the theorem. O
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Unit 3

Reflexive Spaces

Course Structure

* Reflexive spaces: Definition of reflexive space, canonical mapping, relation between reflexivity and
separability, some consequences of reflexivity.

In this chapter we shall assume throughout that the spaces considered are all normed linear spaces.

Definition 3.0.1. Let X be a normed linear space and consider the conjugate space X *. We know that X™ is
a Banach space with the norm

[£IF = sup{[f ()] : [|=l| <1}
As X* was constructed from X, we can form successively the spaces (X*)* = X**, (X**)* = X** and so
on.

We shall mainly concentrate on the space X**, which is known as the second conjugate space of X.
Suppose z € X is fixed and f € X* is variable. Then for different f € X, we obtain different values of
f(z). Therefore, the expression f(z) where x is fixed and f is variable, represents a certain functional F,,
say, over X *. So we write

where z is fixed and f is variable. We show that F). is a continuous linear functional defined on X* and
therefore F,, € X™**.
Let f1, fo € X™* and X be a scalar. Then
F(fi+f2) = (it f)()
= fi(z) + fa(z)
= Fu(f1i) + Fu(f2).

Also, F(Af1) = (Af1)(x) = Mfi(z) = AF,(f1). Further,
()] = | f()] < l=]l|I £,V € X™.

This shows that F}, is linear and bounded and hence F,, € X**. Thus for each x € X there corresponds a
unique continuous linear functional F, € X** given by

Fo(f) = fz) VfeX®
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This defines a mapping C' : X — X** by C(x) = F; if and only if F,(f) = f(x) forall f € X*. This
mapping C'is called the cannonical mapping or cannonical embedding of X into X**.

Next we show that C'is an isometric isomorphism between X and the range of C, which is a subset of X**,
If «, 5 be scalars, then

Fozipy(f) = flaz+ By)
af(x) + Bf(y)
aly(f) + BE(f)
= (alFy + BF,)(f).

Since this is true for all f € X*, we have

Fozx-l-ﬁy = an"‘BFy
ie., Claz + By) = aC(z) + C(y).

This shows that C is linear. Now

@) = B = sup{‘?}ﬁ)’ A1 # o}
(@)
_ p{ L .\fH#O}

This shows that C' preserves norm. Now,

Fry(f)=flx—y) = f(x)—f(y)
= Fu(f) = Fy(f)
= (Fa:_Fy) f)

This gives F,_, = I, — F), and hence
1C(x) = C)ll = 1 Fa = Byll = [Faeyll = [z — yll.

This shows that if z # y then C'(z) # C(y). Thus C is one-one. Therefore C' is an isometric isomorphism
between X and the range of C which is a subset of X **. If the mapping C' is onto, that is if the range of C'is
the whole of X**, i.e., if X = X™**, then the space X is called reflexive.

Example 3.0.2. i) The space R,, is reflexive.
ii) The spaces /) are reflexive for 1 < p < oo.
iii) The spaces [, for 1 < p < oo are reflexive.
iv) The spaces 1, o and C|a, b] are not reflexive.
Theorem 3.0.3. Each reflexive space X is a Banach space but not conversely.

Proof. We note that X** is always complete. Since X is reflexive, X and X** are isometrically isomorphic.
Hence X is also complete. Thus X is a Banach space. O

The following example shows that the converse of the theorem need not necessarily true.
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Example 3.04. Let X = Cy = {z = (z,) : z, — Oasn — oo}. Then X* = Cj = [;. Again
X" =1] =ls. Thus X*™ =1 # Cp = X.

This shows that C, though a Banach space, is not reflexive. This proves the theorem.

Theorem 3.0.5. The conjugate space of a normed linear space remains the same under any equivalent norm.

Proof. Let X be a normed linear space and ||.||1, ||.]|]2 be two equivalent norms on X. Then there exists
constants a, b > 0 such that
allzflz < [zl < bllz2, V2 € X.

Let X (resp. X;) be the conjugate space of X with respect to the norm ||. |1 (resp. ||.||2). Let f € X]. Then
f is linear and bounded with respect to the norm ||.||;. So there is a constant M (> 0) such that

[f(@)] < Mllz[[y < Mb[lz[>.
This shows that f is bounded with respect to the norm ||.||2. Thatis f € X; and hence X} C X;. Similarly,
it can be shown that X5 C X7. Thus we have X| = XJ3. This proves the theorem. ]
Corollary 3.0.6. If X is reflexive then it remains reflexive under any equivalent norm.

Proof. Since the conjugate space of X remains same under any equivalent norm, the corollary follows. [

Theorem 3.0.7. Every closed subspace of a reflexive space is reflexive.

Proof. Let Y be a closed subspace of a reflexive space X and Cy : Y — Y ** be the cannonical mapping.
We have to show that C'y is surjective. Let y** € Y™** and we define a mapping =** : X* — K by
v (x*) = y** (), where 2* € X* and x} is the restriction of z* in Y. It can be easily verified that 2" is
linear and bounded and hence x** € X**. Since X is reflexive, the cannonical mapping C' : X — X is
surjective. So there is an element z € X such that C'(z) = z**. We assert that x € Y. Suppose, if possible,
x ¢ Y. Thend = ;2}@ |ly — z|| > 0, because Y is closed. So by an application of Hahn Banach theorem,

there is a continuous linear functional x; € X* such that
zo(zr) =land zyg =0onY.
This gives
1= ap(x) = 2™ (2p) = y™(0) = 0,
a contradiction. Therefore x € Y and Cy (x) = y**. This proves the theorem. g
Theorem 3.0.8. If X is reflexive then X* is also reflexive.

Proof. Let C* : X* — X™* be the cannonical mapping of X™* into X***. We have to show that C* is
surjective. Let x™** € X*** be arbitrary. We define a functional x* on X as follows:

z*(z) = 7 (C(x))

where x € X and C is the cannonical mapping of X onto X**. We first show that z* € X*. Let x,y € X
and A be a scalar. Then

2 (x+y) =

x*(\x)

I
8 8 8 8 &8 8
:
*
- -
8
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8
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Further,

2% (@) = ["(C())]
< e e @)l
=[]l [since |C(z) [} = ]

This shows that * is a bounded linear functional defined on X and so z* € X*.

To prove the theorem we have to show that C*(z*) = z***. Since 2** € X** and the cannonical mapping
C: X — X™ is surjective, there is an element x € X such that C(z) = z**. Now

CEY ) = (o)
Cla) (=)
= 2" (x)

= 27 (C(x))

— x***(x**).

Since x** € X** is arbitrary, it follows that C*(x*) = x***. This proves the theorem. O
Remark 3.0.9. The converse of Theorem 3.0.8 is also true. Let X™ be reflexive. Then by Theorem 3.0.5,

X** is reflexive. Since C'(X) is a closed linear subspace of X**, by Theorem 3.0.7, it follows that C'(X) is
reflexive. Hence X is reflexive as C' is an isometric isomorphism of X onto C'(X).

Theorem 3.0.10. If X is a reflexive space and if X is separable then X * is also separable.

Proof. To prove the theorem we need a lemma which we state and prove first.
Lemma:
If the conjugate space X * of a normed linear space X is separable, then X is also separable.
Proof of the Lemma

Let S = {f : f € X* | fll = 1}. Since every subspace of a separable metric space is separable, S is

separable. Therefore, S contains a countable dense subset D = { f1, fa, -, fn, -+ } Where || f»|| = 1, Vn.
Since || fn|| = sup{|fn(x)| : ||z|| = 1} for all n, there must exist some vectors z;,, with ||z,|| = 1 and
1
Falan)] > 3.

Let M be the closed linear subspace of X generated by (x,,). We shall show that M/ = X. If possible, let
M # X and 29 € X \ M. Then there exist fo € X* such that || fo|]| = 1, fo(x0) # 0 and fo(x) =0,V € M.
Therefore fo € S and fo(zy,) = 0, Vn. Hence,

2
[(fn = fo)zn| < | fn = Sollllznl
[ = foll [since [lzn[] = 1].
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1
This shows that the open sphere || f,, — fo|| < = centered at f, € S does not contain any point of D, contra-
dicts the fact that D is dense in S. Hence M = X.

If X is a real normed linear space, then the set of all finite linear combinations of x,,’s with rational coeffi-
cient is dense in X. Hence X is separable.

If X is a complex normed linear space, then the set of all finite linear combinations of x,,’s whose coeffi-
cients have real and imaginary part as rational is dense in X. Consequently X is separable. This proves the
lemma.

Proof of Theorem
Since X is reflexive, X is isometrically isomorphic with X** and so X ** is separable. So by the above lemma,
X* is separable. This proves the theorem. O

Theorem 3.0.11. If X is a reflexive space then every bounded sequence in X has a weakly convergent
subsequence.

Proof. Let (x,,) be abounded sequence in X and let Y be the closure of the subspace generated by 1, za, - - - .
So by Theorem 3.0.7, Y is reflexive. Clearly Y is separable and so by Theorem 3.0.10, Y* is separable. Let
C, be the cannonical mapping of Y into Y**. Since (z,,) is bounded in Y and C,, is an isometry, (Cy(xy,))
is bounded in Y**. So, by a known result, [Result: If X is a separable Banach space then every bounded
sequence (f,), fn € X*, contains a weakly convergent subsequence.] we obtain a sequence (Cy(xy,)) which
converges weakly to some y3* € Y**. Since Y is reflexive, there exist yg € Y such that y5* = Cy(yo).

We wish to show that the subsequence () converges weakly to yo. Let z* € X* and let y* be the
restriction of * on Y. Then

x*($n]> = y*(xnj) = Cy(xn])(y*)
= ¥ (") = Cyyo)(y") =y (vo)
= ZL'* (yo)
This shows that z,, s yo. This proves the theorem. O

Theorem 3.0.12. For a sequence (f,,) in X* and f € X*, we have
D fo=r f=fo= f= fo— [
ii) If X is reflexive then f,, — f if and only if f,, — f.
Proof. i) Since strong convergence implies weak convergence, f,, — f implies f,, — f.
Letz € X. Let C' : X — X™** be the cannonical mapping. Then C'(x) = F provided that F,(f) =

f(z) Vf € X*. Let f, = f. Then F(f,) — F(f) forall F € X**. Hence F,.(f,) — F.(f). Since
Fy(fn) = fo(z) and F,(f) = f(x), we obtain f,(z) — f(z) for every z € X. Thus f,, —» f.

ii)) Let C : X — X™* be the cannonical mapping of X into X**. Since X is reflexive, C is onto.
Let f, —» f. Then f,(z) — f(x) forall z € X. Since F(f,) = fn(z) and F(f) = f(z) for
all F € X*, f,(x) — f(z) implies F(f,) — F(f) VF € X**. This gives f, — f. From (i),
oS f = f =5 f. This proves the theorem.

O

30



Example 3.0.13. The following example shows that the weak™® convergence does not necessarily imply weak
convergence.

Solution. Consider the space Cy of null sequences. We know that Cj = ;. Let f,, = (0,0,---,0,1,0---)
where 1 is in the nth place be the nth coordinate functional defined on Cy. If z = (z,,) € Cy, then f,,(z) = z,

and z,, — 0 and n — oo. Therefore f, 2% 0. We now show that (fn) does not converge weakly to zero.
Forlet F = (1,1,---) € I§ = ls. Now F(f,) = 1 for all n and F'(0) = 0. Hence (f,,) does not converge
weakly to 0. This completes the solution. |

3.0.1 Reflexivity of a Hilbert space

Let H be a Hilbert space and H* be the conjugate space of H. We define a mapping 7' : H — H™* by
T(y) = f where forz € H, f(x) = (z,y). So for all z € H, we have

(Ty)(x) = f(z) = (z,y).
Now, if y1,y2 € H, then

(T(y1 + y2))(x) T, Y1+ Y2)

(
(@, 1) + (2, 92)
(
(

Ty1)(@) + (Ty2)(z)
Ty + Ty2)(x).

Thus T is additive.

For any scalar a,

(T(ay)(z) = (2z,0y) = a(z,y) = a(Ty)(x).
This shows that T'(ay) = @T (y), that is T is conjugate linear.

Further, if f € H*, then Riesz Representation theorem provide us a unique y € H such that for all z € H,
f(x) = (z,y). Moreover,

Iyl = 171 = 1Tyl
It follows, therefore, that 7' is a one-one, onto, isometric and conjugate linear mapping from H into H*.
Theorem 3.0.14. If H is a Hilbert space then H is reflexive.
Proof. Let C : H — H™* be the cannonical mapping defined by C(z) = hiff h(f) = f(z) forall f € H*
where © € H and h € H**. We have to show that C' is surjective.

Let fi € H** and we should find an element z € H such that C'(z) = f1. Let T : H — H* be defined
by T'(y) = f where for x € H, f(z) = (x,y) and so for all z € H we have

(Ty)(z) = f(x) = (z,9). (3.0.1)
Let g be a functional defined on H by g(x) = f1(T'z).

Using the conjugate linearity of 7', it can be shown that g is linear. As T is isometric,

l9(2)] [[1(Tz)| = | fi(T)|
[Tl = Ll
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Hence g is bounded and therefore g € H*.

So by Riesz Representation theorem, there exist z € H such that for all x € H, g(z) = (z, 2). So,

[(Tz) = (2,2)
ie, f1i(Tx) = (z,2).

Again by the definition of 7" we have
fi(Tz) = (Tzx)(z) [by (3.0.1)] (3.0.2)

forany T'x € H*. Since T is surjective, any element of H* may be written in the form 7'z, the relation (3.0.2)
gives that C'(z) = f; and C becomes surjective. Therefore H is reflexive. This proves the theorem. O
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Unit 4

Properties of Operators - I

Course Structure

* Bounded linear operator, uniqueness theorem, adjoint of an operator and its properties.

Definition 4.0.1. Let H be a Hilbert space and let A : H — H be a continuous linear operator. For y € H,
define a functional f, on H by

fy(z) = (Az,y). (4.0.1)
Then
fy(z1+22) = (A(21+22),y)
(Azy 4 Az, y)
(Az1,y) + (Az2,y)
fy(@1) + fy(z2).

If A is a scalar, then
fy(Az) = (Adz,y) = MAz,y) = Afy(2).
Moreover, for x € H
|fy(@)] = |(Az,y)| < [[Az|[ly]| < [[Allll=[[||y]]-

Therefore, f, is a continuous linear functional defined on H and || f,|| < [|Al/[ly]|-

Hence by Riesz Representation theorem f, has the form

fy(@) = (z,97) (4.0.2)

for all x € H and y* € H is uniquely determined by f,. If y is changed then f, is changed and so y* is also
changed. Thus we obtain an operator A* : H — H such that y* = A*y.

This operator A* is called the adjoint operator of A. From (4.0.1) and (4.0.2) we see that A and A* are

connected by the relation
(Az,y) = (z, A™y).

‘We note that

(A"z,y) = (y, A*x) = (Ay,z) = (z, Ay).
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4.0.1 Some Properties of Adjoint operators

i) The definition of A* is unique.

Proof. Forallz,y € H,
(Az,y) = (z,A%y) and (Az,y) = (z, Aly).
Then
ie., (z, A"y — Aly) =
Therefore,

A*y—Aly = Oforally e H
ie, A" = A].

ii) A* is a continuous linear operator with
[A™[| < [|A4]-

Proof. For x,y,z € H we have

(z, A%(y + 2)) (Az,y + 2)
(Az,y) + (Ax, 2)
(z, A%y) + (x, A"2)
(x, A%y + A*2)

So,
A*(y+2) =A%y + Az

If A is a scalar, then

(x, A" \y) = (Az,\y)

So,
This shows that A* is linear.

Now by Cauchy Schwarz inequality we see that for ally € H
[A™yl" = (A%, A%y)

(AA™y,y)

[AAy |yl

JAA*y ] ]
Al lyll for all y € .

VANRVANVAN

ie., [[A™y|
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Therefore A* is a continuous linear operator with

1A% < [[A]l-
O
iii) A = A.
Proof. Since A* is continuous linear operator, A** is defined. In the relation
(Az,y) = (2, A%)
we replace A by A* and obtain
(A%, y) = (z, A™y).
Interchanging x and y we get
(A*y7 J)) = (y7 A**I')
Taking conjugate we get
(A™x,y) = (z, A%y) = (Az,y).
Thus A**x = Az,Vx € H and so A** = A. O
) [lA*][ = [|A]l
Proof. For any continuous linear operator 7' : H — H we have by property (ii) above,
1T < {17l
Putting T' = A*, we get
A=) < [1A7
e Al < |47
Hence || A*|| = ||A]|. O

v) If Ay : H— H and Ay : H — H are continuous linear operators, then (A; A2)* = A5A7.

Proof. We note that if A, : H — H and Ay : H — H are continuous linear operators, then
A1 As : H — H is also a continuous linear operator. Now for xz,y € H we have

(z,(A142)%y) = (A1Azz,y)
= (A2, Aly)
(z, A3 ATY).
So, (A1A2)"y A5ATy, Yy € H.
Thus (AlAQ)* = A;AT

vi) [|A*A]l = [|A]]? = ||AA*].
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Proof. We always have

|AAll < [|A*[[[IA] = [|A]1>. (4.0.3)
Now
|Az||*> = (Az, Ax)
= (A"Azx, )
< AT Az||lz|
< [lATAll]?.
So if ||z]| < 1, then
Az < | A*All.
Therefore
1AI? = sup{|| Az||* : ||| < 1} < |A*A]. (4.0.4)
From (4.0.3) and (4.0.4) we get
A Al = [|A]%.
Again
[AAT = A7 A7
= [[(A%)" A%
= [lA*)?
[
O
vii) (A+ B)* = A* + B*
Proof. Forall x,y € H we have
((A+ B)*z,y) (z,(A+ B)y)
= (v, Ay + By)
= (z,Ay) + (z, By)
= (A"z,y) + (B'z,y)
= (A"z+ B'z,y).
Since this is true for all y € H, we have
(A+ B)'z =A%z + B*z = (A" + B*)z,Vz € H.
Hence, (A + B)* = A* + B*. O

viii) For any scalar \, (AA)* = \A*.
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Proof. Forall z,y € H we have

(AA)'z,y) = (z,(AA)y)

Since this is true for all y € H we have

(N)'z = NA'z,Vxe H
andso (A\A)* = AA*.

4.0.2 Self Adjoint Operator

Let H be a Hilbert space. A continuous linear operator A : H — H is called self-adjoint if A* = A.
Theorem 4.0.2. If

a) A is self-adjoint,

b) (Az,y) = (z, Ay),Vz,y € H,

¢) (Az,z) = (x, Ax),Vx € H,

d) (Az,x)isreal Vo € H,
then (a)=(b)=-(c)=-(d).
Proof. Let A is self-adjoint. Then A = A*. Soforall x,y € H

(Az,y) = (z,A"y) = (z, Ay).

Thus (a) = (b).
Since (Az,y) = (x, Ay) forall z,y € H, taking y = = we get
(Az,z) = (z, Ax) Vz € H.
Thus (b) = (¢).
Again

(Az, z) = (x,Ax) Vx € H
= (Azx, ) = (Azx,z)
= (Az,z) isreal

Thus (c) = (d). This proves the theorem.
Theorem 4.0.3. i) If A and B are self-adjoint then so is also A + B.
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ii) For any continuous linear operator A, the operators A*A, AA* A + A* are self-adjoint.
iii) If A is self-adjoint and « is real constant then oA is self-adjoint.
iv) If A and B are self-adjoint, then AB is self-adjoint if and only if AB = BA.
Proof. Since A and B are self-adjoint, we have
A* = Aand B* = B.
i) Hence (A+ B)* = A* + B* = A+ B. Thus, A + B is self-adjoint.

ii)

(A*A)* = A"A™ = A*A,

(AA*)* = A™A* = AA",

(A+ A =A"+ A" =A"+ A=A+ A"

Therefore, A*A, AA* and A + A* are self-adjoint.
iii)
(aA)" =a@A* = aA” (since « is real).

Hence oA is self-adjoint.
iv)
(AB)* = B*A* = BA
From this it follows that AB is self-adjoint if and only if AB = BA. This proves the theorem.
O

Theorem 4.0.4. The collection of all self-adjoint operators form a closed real linear subspace of the space of
all continuous linear operators that map H into itself.

Proof. Itis clear that 0* = 0 and I* = I where 0 and I denote respectively the zero and the identity operators.
Let (i = 1,2,--- ,n) arereal and A;(i = 1,2,--- ,n) are self-adjoint operators. Then

(a1 A1 + agAo + -+ anAy)" = 1Al + A5+ -+ R4,
= 1A +ads+ -+ o Ap.

This shows that ai; Ay + g As + - - - + a, Ay, is self-adjoint.

Now assume that (A,) is a sequence of self-adjoint operators converging in norm to a continuous linear
operator A. Then

A" = Al < [[A" = ALl + [[ A7 — Anll + [|An — Al
= (A=A + [|An — A
= 2||A, — A]| = 0asn — oo.
Hence A* = A. Thus A is self-adjoint. This proves the theorem. O

Theorem 4.0.5. Let A : H — H be a continuous linear operator. Then (Ax,y) = 0 for all z,y € H if and
only if A = 0, the zero operator.
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Proof. Let A = 0, the zero operator. Then
(Az,y) = (0,y) = 0,Vx,y € H.
Conversely, if (Az,y) = 0,Vz,y € H, then choosing a fixed =, we see that
(Az,y)=0,Yy e H
and so Az = 6. This is true for any x € H and so A = 0, the zero operator. This proves the theorem. O

Theorem 4.0.6. Let A : H — H be a continuous linear operator. If (Az,x) = 0 forall x € H, then A = 0,
the zero operator.

Proof. Tt is sufficient to show that (Az,y) = 0.V, y € H. For arbitrary scalars « and 3 we have

0 = (A(az + By), ax + By)

(aAzx + Ay, ax + By)

(aAz, ax) + (aAw, By) + (BAy, ax) + (BAy, By)
= |af*(Az,2) + aB(Az,y) + aB(Ay,z) + |B]* (Ay, y)

= aB(Az,y) +ap(Ay,z). (4.0.5)

Putting o« = 5 = 1 in (4.0.5) we get
(Az,y) + (Ay,z) = 0. (4.0.6)

Putting o = 7 and 5 = 1 in (4.0.5) we get

i(Az,y) —i(Ay,x) =0
ie., (Az,y) — (Ay,x) = 0. (4.0.7)

From (4.0.6) and (4.0.7) we obtain
(Az,y) = 0,Vx,y € H.

This proves the theorem. O

Theorem 4.0.7. A continuous linear operator A : H — H is self-adjoint if and only if (Az, z) is real for
allz € H.

Proof. First we suppose that A is self-adjoint. Then A* = A. Now

(Az,z) = (x, Az) = (A%x,z) = (Az, x).
Hence (Ax, x) is real for all x in H.

Next we assume that (Ax, x) is real for all  in H. Then,

(Az,z) = (Azx,z) = (x, A*z) = (A'z, x)
ie., (Az — A*z,2) =0,V € H
(

ie., (A—A")z,2) =0,V € H
ie., A — A* =0, the zero operator.
ie., A=A".
Thus A is self-adjoint. This proves the theorem. 0
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Theorem 4.0.8. Suppose that A : H — H is self-adjoint operator. Then
[A[] = sup{|(Az, )| : [l=] = 1}.
Proof. We write S4 = sup{|(Az,x)| : ||z| = 1}. If ||z|| = 1, then
|(Az, 2)| < || Az|[l]| < [|A][l]* = ||A]

and hence
Sa < ||A]. (4.0.8)

On the other hand, if ||y|| = 1 then clearly
|(Ay, )| < Sa-llyl*.

If |y|| # land y # 6, lety’ = ——. Then ||3/|| = 1 and

[(Ay',y')| < Sa
ie,  [(Ay,y)| < Sallyl* (4.0.9)

The inequality (4.0.9) also holds if y = 0. If z € H and z # 6, we put
1
A 2 1
= (H ZH) and u = —Az.
2]l A

(AAz +u), Az +u) = (AMz+ Au, \z+u)
= |M?(Az, 2) + MAz,u) + MAu, 2) + (Au, u)

Then

(since A is real).
Also, (A(A\z —u), Az —u) = (Mz— Au, Az —u)
= |M?*(Az, 2) — MAz,u) — MAu, 2) + (Au, u).
So, (A(A\z+u), Az +u) — (A(Az —u), Az —u) = 2\[(Az,u)+ (Au, 2)]

= 2\ [(Az, ;Az) + (iAz,Az)] [since A* = A
= ).
Thus,
[42? = A +w), Az +u) — (AQz — ), Az — u)]

1
< ZSA[H)\Z +ul]® + Az —ull?]
[ since (Ay,y) < Sally||* and — (Ay,y) < Sally*]

1
= —Sa[|Az]|*> + ||lu|/?], by Parallelogram law

2
|12l T4z
= SAIIAZIIHZH

ie, ||Az| < S|
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and consequently
[ A]l < Sa. (4.0.10)

From (4.0.8) and (4.0.10) we obtain
Sa = sup{|(Az,z)| : ||=]| = 1} = [|A].
This proves the theorem. O
Theorem 4.0.9. Let A : H — H be abounded linear operator. Then the following statements are equivalent.
i) A*A = I, the identity operator.

i) (Az, Ay) = (x,y),Vz,y € H.

iii) ||Az|| = ||z|,Vz € H.
Proof. (1) = (ii)

(Az, Ay) = (A" Az, y) = (Iz,y) = (z,y).

(ii) = (iii)
By (ii) we have

(Ax, Ay) = (z,y),Vz,y € H
ie., (Az, Az) = (z,x),Ve € H
ie., |Az|? = ||z||? V2 € H
ie., |Az| = ||=||,Vz € H.

(iii) = (1)
[Az]| = [lz||,Vz € H
ie., (Ax, Ax) = (z,x),Vr € H

ie., (A*Az,z) — (x,z) =0,Ve € H
ie., ((A*A—-1D)zx,z) =0,Vx € H.

This implies that

A*A — 1 =0, the zero operator
ie., A*A =1T.

This proves the theorem. O

Definition 4.0.10. Let 7" be an operator on a Hilbert space H. A scalar ) is called an eigen value of T if there
exists a non-zero vector = in f{ such that T'r = Az.

If A is an eigen value of 7', then any non-zero vector z in H that satisfies 7'z = Az is called an eigen vector
of T

Note 4.0.11. i) Corresponding to a single eigen value of 7', there may correspond more than one eigen
vector.

ii) If x is an eigen vector of 7', then = cannot correspond more than one eigen value of T'.
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Theorem 4.0.12. Let T': H — H be a self-adjoint operator. Then
1) all eigen values of T', if exist, are real;
ii) eigen vectors corresponding to distinct eigen values of 7" are orthogonal.

Proof. i) Let \ be an eigen value and z:(# 0) be a corresponding eigen vector of 7. Then T'z = Ax. Since
T is self-adjoint, we have T* = T'. Now

Mz, z) = (Mo, 2) = (Tz,2) = (2,Tz) = (2, \2) = Xz, T)

A=) (z,2) =0
ie., A = X [since (z,7) # 0.

ie.,

Thus ) is real.

ii) Let « and y be two eigen vectors corresponding to distinct eigen values A and p respectively. Then
Tx = Ax and Ty = uy. Now,

Mz, y) = (Ax,y) = (Tz,y) = (2, Ty) = (2, py) = p(z,y)

(A= p)(z,y) =0
(z,y) =0 [since A # .

1.e.,
1.e.,

This proves the theorem.
O

Theorem 4.0.13. Let 7' : H — H be any continuous linear operator. Then 7" can be expressed uniquely in
the form 7' = A + i B where A and B are self-adjoint operators.

(T'—T7). Then

1
Proof. Let A= —(T+T%),B = 5
i

1

2

A = %(T* +T)= Aand

1

2i
So that A and B are self-adjointand A +iB =T

B*=——(T"-T)=B

If T'= C +iD where C and D are self-adjoint, then
T =C*—iD*=C —iD.
Therefore T'+ 1% =2C and T' — T = 2¢D. Thus C' = A and D = B. This proves the theorem. O

Theorem 4.0.14. Let 7' : H — H be a bounded linear operator such that 77" = T'T™. Then Tz = Az if
and only if 7%z = Ax for x € H and A is a scalar.

Proof. Consider the operator 7' — AI where [ is the identity operator. Then
(T — M) (T — \I)* = (T —X)(T*— )

= TT* = NT — \T* + |\*1
and (T — A)*(T — XI) = (T* = XI)(T — \I)

= T*T — \T* — \T + |\°I.
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Since T*T = TT™, we have

(T —AN)(T —XD)* = (T = XI)*(T — XI)
ie., SS* =8*S, where S =T — \I.

Therefore,
S8 (x) = §*S(x),Yx € H
e,  (SS*(x), ) (575(x), )
e,  (S*(z),S%(x)) = (S(x),S(x))
e, [IS* @) = [1S(x)|?
e,  [[S™(@)] =[IS(=)|

ie.  [(T"=ADa|l = (T = AD)(z)|
ie., |T*z — Az|| = ||Tx — \z]|.

This shows that Tz = Az if and only if 7*x = Az. This proves the theorem.
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Unit 5

Properties of Operators - 11

Course Structure

» Self-adjoint, compact, normal, unitary and positive operators, norm of self -adjoint operator, group of
unitary operator, square root of positive operator-characterization and basic properties

Definition 5.0.1 (Completely Continuous Operators). A linear operator 7' mapping a Hilbert space H into a
Hilbert space H;(or a Banach space B into another such space B) is called a completely continuous operator
if given any sequence (z,,) in H such that (||z,||) is bounded, the sequence (7T'x,,) has a convergent subse-
quence.

It is clear that an operator 7" is completely continuous if and only if ||z,| < 1 implies that (T'x,) has a
Yn

convergent subsequence because if the sequence (y,,) be such that ||y,| < M, then we may take x,, = i

and in that case ||z, | < 1.

Note 5.0.2. A completely continuous operator is sometimes called a compact operator.
Note 5.0.3. The zero operator is completely continuous.

Theorem 5.0.4. A completely continuous operator is continuous.

Proof. Let T be a completely continuous operator. Then 7" is linear. We show that 7" is bounded. If possible,
let 7" be not bounded. Then there is a sequence (x,,) such that

| Txy| > nl||lxy,| forall n.

Lety, = xin,Vn. Then ||y,|| = 1. Now
|nll

n 1
Tyn) =T ( v ) ——Txy, > n,Vn.

lzall ) Nzl

Therefore the sequence (T'y,,) cannot have any convergent subsequence which contradicts the fact that T is
completely continuous. Hence T is bounded and so 7" is continuous. This proves the theorem. 0
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Example 5.0.5. Let H be a Hilbert space. If y, 2 € H are fixed, then the operator 7' : H — H defined by

T(z) = (z,y)z
is completely continuous.
Solution. We have
T(z1+w2) = (21+22,9)2
= (z1,9)2 + (¥2,9)2
= Tx1+Txo

and T(A\x) = (Az,y)z = Az,y)z = \T'z.
Hence T’ is linear. Let () be a sequence of elements from H such that ||, || < 1. Then

|(n; )| < [lewnllllyll < llyll

and so the sequence ((,,y)) has a convergent subsequence ((c,, ,y)) that converges to v, say. But in that
case

T(Oénk) = (Oénk,y)z —az ask —

and so 1" becomes completely continuous. |

Example 5.0.6. Let H be a Hilbert space. The identity operator I is not completely continuous although it is
continuous.

Solution. Let (x,) be a sequence of elements in H such that z,, — x as n — oo. Then
Iz, =z, >x=1Ix asn — oo,
showing that the identity operator [ is continuous.
Let () be an orthonormal sequence. Then

(Tpyxm) = 1, ifn=m

0, if n # m.

so that ||z, || = 1 for all n. If n # m, then

HI:cn—Ime2 = H$n_$mH2

(Tn — Ty T — Tim)
= 2

Iz, — Iyl = V2, ifn#m.

i.e.,

Therefore (Ix,) cannot have any subsequence which is Cauchy and hence it cannot have any convergent
subsequence. Therefore I is not completely continuous. |

Theorem 5.0.7. If T" is completely continuous and A is a scalar then AT is completely continuous.
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Proof. Let (x,) be a sequence of elements from H such that ||z, || < 1. Since T is completely continuous,
there is a subsequence (zy, ) of (z,,) such that (T'x,, ) is convergent. Let

Trp, —u, ask — oo.

In that case,

lim (AT)xy, = A lim Tx,, = \u,
k—o0 k—o0

which shows that AT" is completely continuous. This proves the theorem. O
Theorem 5.0.8. If .S and T are completely continuous operators then .S + 7' is also completely continuous.

Proof. Let (zy,) be a sequence of elements from H such that ||z,| < 1. Since S is completely continuous,
there is a subsequence (zy, ) of (z,) such that (Sz,, ) is convergent. Let

lim Sz,, = u.

k—o0 ’
Again, since T" is completely continuous, there is a subsequence (2, ) of (2, ) such that (T'zy,, ) is conver-
gent. Let

lim Twy, =wv.
l—o00

It is clear that

lim Sz, =u.
l—00 l
Therefore,
lim (S 4+ T)x,, = limS,, + lim T,
l—o0 ! l—o0 L l—o0 !
= u-+w.
This shows that S + T is completely continuous. This proves the theorem. O

Theorem 5.0.9. If T" is a completely continuous operator and S is a continuous linear operator then both T'S
and ST are completely continuous where S and 7" map H (or B) into itself.

Proof. Clearly both T'S and ST are continuous linear operators. Let (x,,) be a sequence of elements from H
such that ||z, || < 1. Since 7" is completely continuous, there is a subsequence (xy,,) of (z,,) such that (T'z;,,,)
is convergent. Let

Txp, —u asp— oo.

Since S is continuous, we have
S(Tzy,) = STxy, — Su  asp — oo,
showing that ST is completely continuous.
In order to show that 7'S is completely continuous, we first observe that
1Szl < [IS]llznll < [1S]]-

That means the sequence (Sz,,) is bounded in H(or B). Since T is completely continuous, there is a sub-
sequence (Szy, ) of (Sxzy) such that (T'Szy, ) is convergent. This shows that 7'S is completely continuous.
This proves the theorem. 0
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Theorem 5.0.10. If (7,,) is a sequence of completely continuous operators in a Hilbert space H (or a Banach
space B) into a Hilbert space H;(or a Banach space By)andif T': H — Hi(orT : B — Bj) is a bounded
linear operator such that |7" — T,,|| — 0 as n — oo, then 7" is completely continuous operator.

Proof. The proof of this theorem is beyond the scope of this study material. O

Theorem 5.0.11. Let H be a Hilbert space and 7' : H — H be continuous linear operator. If 77T is
completely continuous then 7" is also completely continuous.

Proof. Let (x,,) be a sequence of elements in H such that ||z,| < 1. Since T*T is completely continuous
there is a subsequence (zy, ) of (z,) such that the sequence (7*7T'zy, ) converges. Now

| Txp, — T:Ean2 = (Tzp, — Ty, Twy, — Txnp)

(T(l"nk - xnp)a T(xnk - xnp))
(T*T(‘Tnk - xnp)v Ty, — x"p)

[T (2, = 2y, ) |20, = 2, |l

1T T, — T T, |{lJen || + [l2n, [}
2| T Twy, — T Ty, ||

0, ask,p— oc.

L IAIA A

This however means that the sequence (1'zy, ) is a Cauchy sequence in H. So (T'z,, ) is convergent and hence
T is completely continuous. This proves the theorem. U

Theorem 5.0.12. If T': H — H is completely continuous, then its adjoint 7™ is also completely continuous.

Proof. Let (x,,) be a sequence of elements in H such that ||z, | < 1. Then,
[T 2n || < T ([{|nll < 177 = (1T

Therefore the sequence (7™z,,) is bounded. Since 7" is completely continuous, the sequence (77*x,,) has a
convergent susequence. This shows that the operator 77" is completely continuous.

If S = T, then since TT* = (T*)*T* = S*S, we have S*S is completely continuous. So by Theorem
5.0.11, S = T* is completely continuous. This proves the theorem. O

Theorem 5.0.13. The range of a completely continuous operator is separable.

Proof. LetT : E — F; be a completely continuous operator where £ and F are normed linear spaces.
Let T'(A,) = Gy, where A, = {z € E : ||z|| < n}. Since the set A, is bounded in F and the operator 7" is
completely continuous, any sequence of elements from G, has a convergent subsequence. That means G, is
compact and hence GG, is separable. So there is a countable set F,, C GG, which is everywhere dense in G,,.

o0 o0
Clearly G = U G, is the range of T'and F' = U F}, is a countable subset everywhere dense in G. Hence
n=1 n=1

G is separable. This proves the theorem. O

Definition 5.0.14 (Normal Operator). Let H be a Hilbert space. A continuous linear operator N : H — H
is said to be normal if it commutes with its adjoint, that is if NN* = N*N.

Note 5.0.15. Since N** = N, it follows that if an operator NN is normal, then its adjoint /N* is also normal.
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Note 5.0.16. If N is self-adjoint, thenN = N*. In that case NN* = N*N and hence N is normal.

Theorem 5.0.17. If N; and N, are normal operators on a Hilbert space H such that either commutes with the
adjoint of the other then the operators Ny Ny and N; + Ny are both normal.

Proof. Suppose that N1 commutes with the adjoint of N so that N1 N5 = N5 Ni. Then we see that
(NiN3)* = (NyNy)*
i.e., NgNik = NikNQ

This means that No commutes with the adjoint of V;.

Now

(N1 N2)(N1N,)* = NiN,NjN;
Ny NjN,N}
NiNiNi N,
N3Ni NN,
= (N1 N2)*(N1NNy).

Hence NNy is normal. Also

(N1 + N2)(Ni+ N2)* = (N1 + Na)(NY + Ny)
Nle + ]\71]\75< + ]\72]\7i|< + ]\72]\75<
(N7 + N3) (N1 + Na)
NNy + NiNy + NiNy + N3N,
= NiN{ + NoNi + NiN + NoNj.

i.e., (N1 + NQ)*(Nl + NQ)

That is (N1 + Na)(N7 + Na2)* = (N1 4+ N2)*(Ny + N2). This means that N1 + No is normal. This proves
the theorem. O

Theorem 5.0.18. Let H be a Hilbert space. A continuous linear operator 7' : H — H is normal if and only
if
ITa| = 1T, Ve € H.

Proof. We have

|72 = |2
ifand only if || Tz|? = ||T*z|?
i.e., if and only if (T"z, T*z) = (Tz,Tx)
i.e., if and only if (TT*z,x) = (T"Tx,x)
i.e., if and only if (TT* —=T"T)z,z) = 0.

Note that the above relation holds for all z € H. Hence T' is normal if and only if if
|Tz|| = ||T"z||, Yz € H.

This proves the theorem. 0
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Theorem 5.0.19. If NV is a normal operator, then
IN?[| = |INV]?

Proof. We first note that if A and B are continuous linear operators mapping H into itself with the property
||Az|| = || Bx|| for all  in H, then ||A|| = || B||. Now by theorem 5.0.18, we have

IN?*z|| = [N (Nz)|| = |N*(N)|| = [ N*Nax|.

So by our previous note, we get

IN?[| = |N*N.
Also for any continuous linear operator A : H — H,
1A* Al = 1| A]”%.
So,
IN*N|| = || N]?
ie,  [IN?[ll= [N
This proves the theorem. O

Theorem 5.0.20. A continuous linear operator 7' : H — H is normal if and only if its real and imaginary
part commute.

Proof. Let Aj and As be the real and imaginary parts of 7. Then T' = Ay +i Ay where A1, A, are self-adjoint
operators [see Theorem 4.0.13].

Therefore,

T = (A1 +iA9)"
= Al +i43
= Aj —iAs.
So, TT* = (A1 +iAs)(A1 —iAs)
= A% —iA1As +iAxA + A%
and T*T = (A1 —iAs)(A; +iAs)
= A? 1iAj Ay —iAyA) + AL
From above it is clear that
TT =TT*, if AjAs = Ay Ay

Hence T is normal if A; and A5 commute.

Conversely, if 7' is normal, then
TT* =T*T

and in that case

—A1Ay + As Ay = A1 Ay — A Ay
i.e., 2A1A2 = 2A2A1
i.e., A1A2 = A2A1

ie., A7 and A commute.

This proves the theorem. 0
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Theorem 5.0.21. If T is normal then Tz = Az if and only if 7*2 = Az, for z € H and where ) is a scalar.
Proof. The proof of the theorem follows from Theorem 4.0.14. U

Theorem 5.0.22. The set of all normal operators on a Hilbert space H is a closed subspace of the set of all
continuous linear operators that map H into itself which contains the set of all self-adjoint operators and is
closed under scalar multiplication.

Proof. i) If N is self-adjoint, then N = N* and so NN* = N*N. Therefore every self-adjoint operator
is normal.

i1) If NV is normal and A is scalar, then
(AN)(AN)* = AN(AN*) = AMANN* = AMAN*N
= (AN*)(AN) = (AN)*(AN).
So AN is normal.

iii) Let (/Vy) be a sequence of normal operators that converges in norm to the continuous linear operator NV
so that
IN, — N|| -0 ask — oc.

Now
[N — N*|| = [[(Ng — N)*|| = || N, — N

This shows that the sequence (IV}*) converges to N*.

Therefore
|NkeNj — NN*|| = |[NpN;— NN; + NN;— NN¥|
= ||(Nx = N)Np + N(N; — NY)||
< [Nk = N[[[Ng[[ + [NV = N¥]
— 0, as k — oo.
Similarly,
INfNp — N*N|| — 0 ask — oo.
So,

INN* = N*N|| = |INN* = NyNj + NiNy— N*N|
< |NN* = NNi[| + | NiNg — N*N]|
— 0 ask — oo.

This shows that NN* = N*N and hence N is normal. This proves the theorem.
O

Definition 5.0.23 (Unitary Operators). A continuous linear operator 7' that maps a Hilbert space H into itself
is said to be unitary if it satisfies the condition

T =T"T=1
where [ is the identity mapping.
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Remark 5.0.24. If 7' is unitary, then 7' is injective. For, if T'z; = T'x» then operating both the sides by the
operator 7%, we get T*Txy = T*Txo and T*T = I implies that x1 = xo. Also if T is unitary, then T is
surjective mapping. Because if y € H then

T(T(y) =TTy =1y = y.

It follows, therefore that the unitary operators on H are precisely those operators whose inverses are equal to
their adjoints.

Remark 5.0.25. Every unitary operator is normal. The following example shows that a normal operator need
not be self-adjoint or unitary.
1
Let I : H — H be the identity operator. Let T' = 2il. Then T* = (2il) = —2il. Also T~ ! = _EU'
So, TT* = T*T = 41, T* # T. Also, T* # T~'. This shows that T is normal which is neither self-adjoint

nor unitary.

Theorem 5.0.26. A continuous linear operator 7' : H — H is unitary if and only if 7" is an isomorphism of
H onto itself.

Proof. If T is unitary, then T is bijective and also 7*T = I. So by Theorem 4.0.9, | Tz|| = ||x||. So T is an
isomorphism of H onto itself.
Conversely, if 7" is an isomorphism of H onto itself, then T~ exists and ||Tz|| = ||z||. So by Theorem
4.0.9, T*T = I. It now follows that
(T*T)r ' =I1T""

e, T*=T7"

ie., TTr* =1.
So, TT* =T*T = I and T is unitary. This proves the theorem. O

Definition 5.0.27 (Positive Operators). Let H be a Hilbert space and A : H — H be a self-adjoint operator
so that (Az, z) is real for all z in H. The operator A is called positive, A > 0, if (Az,x) > 0 forall z in H.

Remark 5.0.28. If both the operators A and B are self-adjoint and if

(Az,z) > (Bz,x), Ve € H
ie.,if (A= B)x,z) >0 Vx € H
ie,if A—B>0,

then A is said to be greater than B or B is said to be less than A. In notation, we write A > B or B > A.

Remark 5.0.29. Let A be a self-adjoint operator. Since (A%x,z) = (Az, A*z) = (Az, Ax) = ||Ax|]*> > 0,
it follows that the square of a self-adjoint operator is positive.

Remark 5.0.30. We note that for any any continuous linear operator A : H — H, the operator AA* and
A* A are self-adjoint. We also have

(AA*z,2) = (A'z, A"z) = | A"z[|* > 0
and (A*Az,2) = (Az, Ax) = ||Az||> > 0.

Hence the operators AA* and A* A are always positive. It is also clear that the sum of two positive operators
is positive.

51



Theorem 5.0.31. If A and B are positive self-adjoint operators such that AB = BA, then the operator AB is
positive.

Proof. If A = 0, the zero operator, then the result is clear. We therefore suppose that A £ 0. By Theorem
4.0.3(iv), AB is self-adjoint. We put

1
A=A de = A= Af Ay = Ay — 4B,

Apy1=Ap, — A2,

and we show that

0<A,<I (5.0.1)
forn =1,2,3,--- and [ is the identity operator. Since A is self-adjoint, it is clear that each A,, is self-adjoint.
If n = 1, then

1
(Ajz,z) = W(Aa;,ac) >0, andso A; > 0.
Also, because
(Aiz,z) = |(Aiz,2)] < [ Adlll=]? = [l
= (z,2) = (Iz,z),

we obtain
(I —Ay)z,x)>0
i.e., A1 < I.

Thus the relation (5.0.1) is true for n = 1.
We now suppose that (5.0.1) is true for n = k. Then

(A2(I — Ap)z,x) = (Ap(I — Ap)z, Ajx)
= (Ap(I — Ap)z, Apz)
= ((I — Ak)Akw,Ak{L’) > 0
because I — Ay, is positive. Therefore,
AZ(I — Ag) > 0.

Similarly, it can be shown that A (I — A;)? > 0. As the sum of two positive operators is positive, it follows
that
Api1 = A%(I — Ak) + Ak(I — Ak)z > 0.

Further,
I—Apyr =T —Ap)+ A >0.

This shows that the relation (5.0.1) is true for n = k£ + 1. Hence (5.0.1) is true for all n.
Moreover,

Ay = A2+ Ay=A2+ A2+ A3=--.
= A+ A3+ + A+ A

This implies that for any positive integer n
n
ZA2 = A — Apy1 < Ay (5.0.2)
k=1
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So,

A=) AL >0
k=1

ie., ((Al — ZA%)JZ,&Z) >0
k=1

ie., (Ajz,x) — Z(A%m,m) >0
k

Il
—

[Axz]* > 0

NE

ie., (Ajz,x) —

>
Il
—_

n

e, ) Al =D (Ax, Apz) < (A, ).
k=1 k=1

This however means that the infinite series

o o
DAkl =) (A, Aga)
k=1 k=1
is convergent and so lim ||A,z|| =0ie., lim A,z =0.
n—oo n—oo

So from (5.0.2) we obtain

(Z Aﬁ) r = (A — Ay = Az — Apz
k=1
— Ajx as n — oo.

Since B is continuous, we have

B (ZA%{).’E—)BAl:B asn — 0o

k=1

n
ie., Z BA%{I' — BAjx asn — oo
k=1

and so (Z BA% .z, m) — (BAjz,z) asn — oo.
k=1

Now since B commutes with A, it commutes with each A; and hence

(ABw,x) = || AI(ArBa,x) = | Al (BAr, )
— A i Y (BAZa,2)
k=1
_ : 2
= | A|| lim » (AZBz,x)
k=1
= 141 Jm DB A

= ||A] lim ;(BAk:c,Akx) >0,
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because B is positive. This shows that AB > 0 and the theorem is proved.
O

Definition 5.0.32. A sequence (A,,) of self-adjoint operators in a Hilbert space H is called increasing(decreasing)
if A, < Ap+1(Ay, > Apya) for all n.

Theorem 5.0.33. Let (A,,) be a sequence of self-adjoint operators in a Hilbert space H such that
A <A< <A, < <B

where B is a self-adjoint operator on H. Suppose further that any A; permutes with B and with every A,,.
Then (A,,) is strongly convergent and the limit operator A is linear, bounded and self-adjoint and satisfies
A<B.

An analogous result holds for monotone decreasing sequence.

Proof. The proof of the theorem is beyond the scope of this study material. O

Definition 5.0.34. Let H be a Hilbert space and A : H — H be a positive operator. A self-adjoint operator
B defined on H is called a square root of A if B2 = A. If, in addition B > 0, then B is called a positive
square root of A and is denoted by B = A3,

Theorem 5.0.35. Every positive self-adjoint operator A has a unique positive square root B. The operator B
is permutable with any operator that permutes with A.

Proof. If A = 0, then we take B = 0. So, we assume that A # 0. We can further assume that A < [ where [

is the identity operator. Because, if not, let

1
A= ——A
LA

so that || A1 || = 1. By Schwarz inequality
(Arz,2) < [Aszllz]] < [|Allll]® = [l2]* = (z,2)
and hence

(I —Ayz,z) = ([z,x)— (Ar1z,2)
(x,z) — (A1z,2) >0
i.e., A1 S I.

We now construct a sequence of operators by

1
Bu1 =B+ (A - B2) (5.0.3)

and so on. Since A is self-adjoint and the sequence of a self-adjoint operator is self-adjoint, it follows that all
B, are self-adjoint.
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We now show that each B,, is permutable with any operator that is permutable with A. In fact, if B’

permutes with A, then
B'A=AB'.

In that case,

N |

BB =B (+4)=tma=tap -5,
2 2

1
B'By = B [Bl +5(A- B%)]
[ 1
r 1
= |BB'+ 5(AB’ - B%B’)]

= |Bi+ %(A - B%)] B’

= BB

So, in general, B'B,, = B, B’ for all n. In particular, AB,, = B,,A and AB,,, = B,,A, Ym,n and so by our
preceding remark
B, B,, = B,,B,, Y m and n.

This shows that the sequence (B,,) constructed above is mutually permutable. Now

1 1

“(I—=B)>+=-(I—-A
2( )+2( )
1 1
= 5(I—2J_t,zmuze,%)+§(I—A)

1 1
= I-B,+-B>—-A
tebnTy
1
= I- Bn+§(A—B,3)
= I_Bn+1
. ]. 2 ]_
1.€., I — Bn+1 = 5([ - Bn) + 5([ - A)

Since A < I, we obtain B,, < [ for all n.
Again, by (5.0.3) we have

Bny1—Bn = |Ba+ %(A - Bg)] - [Bn_l + %(A —- B2 )
= (Ba—Ba)— (B2 - B2y)
= |1 5Bt Ba)| (B - By
- [;(I B+ - Bn_l)} (Bu — Bo_y). (5.04)

Since B,, < I for all n, equality (5.0.4) shows that B, 1 > B,, provided B,, > B,,_; for each n. But
1
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and so By 1 > By, Vn.
We therefore see that the sequence (B,,) constructed above is such that

By<B <By<---<B,<Bpj<---<I

Further this sequence is mutually permutable and commutes with /. So by Theorem 5.0.33, the sequence
(By,) converges strongly to a self-adjoint operator B which satisfies the relation B < I. We now verify that
B >0and B?> = A.

Since By > 0 and the sequence (B,,) is increasing, it follows that each B,, is positive and hence

(Bpx,x) >0 Vn.
Proceeding to the limit as n — oo we obtain

(Bz,z) >0
ie. B > 0.

Letting n — oo in (5.0.3) we get
1
B=B+g(A- B?) ie.,B?=A.

So, the existence of a positive square root B of the operator A is obtained.
Now, B,, is permutable with any operator that permutes with A. So if the operator C' permutes with A then
C permutes with B,,. That means
B, C =CB,

and so B,,Cx = CB,x forall z in H.
Taking limit,
BCx = CBx Vxe H
ie., BC = CB.

So B permutes with C, i.e., B is permutable with any operator which permutes with A.
We now prove the uniqueness. Let B be another positive square root of A. Since B permutes with A, by
the preceeding remark we have
BB = BB.

Letz € H andy = (B — B)x. Then
(By,y) + (By,y) = ((B+B)y,y)
= ((B*=B")a,y)
— (A= Ay) 0.

Since both B and B are positive, it follows that

(By,y) = 0 = (By,y).

Because B is positive, by what we have already proved, there is a self-adjoint operator C such that B = C?.
So

ICyll = (Cy,Cy) = (y,C*Cy) = (y,C%y)
= (y,By)=0
ie,Cy = 6.
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So,
By = C?%y = C(Cy) = 6.

Similarly, By = 0. Thus forz € H,

|Bz - Bz|* = |(B-B)z|?
= ((B-DB)z,(B-B)z)
= ((B-B)(B-B)z,z)
= ((B—-B)y,x)
= (By,z)— (By,x)
= 0

ie, Br = Bx Vx e H.

Since x € H is arbitrary, it follows that

This proves the uniqueness and hence the theorem.
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Unit 6

Course Structure

* Projection operator and their sum, product & permutability, invariant subspaces, closed linear transfor-
mation, closed graph theorem and open mapping theorem.

Let L be a closed subspace of a Hilbert space H and z € H. Then there exist a unique decomposition
r=y+z wherey € Land z € L.
The element y is called the projection of the element z in L.

6.0.1 Projection Operator:-

We can define an operator P by the rule P(x) = y because this association depends on the subspace L. We
sometimes write Py, instead of P to indicate the subspace L. This operator Py, whose domain is H and range
is L is called a projection operator. We say that P is a projection on the closed subspace L.

Theorem 6.0.1. P, is a self-adjoint operator with || P || < 1 and P;, = Py,.

Proof. Clearly Py, is a linear operator. If z = y + z where y € L and z L L, then Pr(z) = y and since
y L 2, we have

21 = lly + 211> = llyl* + 12l1* > Iyl

So,
[Pr(@)]| = [yl < |z, Vo€ H

so that, || P|| < 1.

Butif z € L, then Pr(x) = x and then || P (z)|| = ||z, ie., ||PL| = 1.

Let x1,22 € H and y1, y2 be their projections on L, i.e. x1 = y1 + 21, T2 = y2 + 22 where y1,y2 € L and
21, 29 L L then,

(Przi,x2) = (y1,22) = (y1,%2 + 22)
= (y1,y2) + (y1, 22)
= (yla 92)

and (.%'1, PL.TUQ) = (.%'1, yg) = (yl, yz) SO that, ((L‘l, PLxQ) = (PLxl, .1‘2) = (xl, szz) for every ri, T € H.
Hence, P;, = P} and so Py, is self-adjoint.
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Now forall z € H, Prz € Land for 2’ € L, Pz’ = 2'. So,
Pl¢ = Pp(Ppz) = Pra; Vo € H

So, P} = Py.
This proves the theorem. O

Theorem 6.0.2. Every self-adjoint operator with P? = P is a projection operator on some closed subspace.

Proof. Let, L denote the set of all elements y € H of the form y = Px for all x € H. Since, P is linear, it
can be verified that L is a subspace. We will show that L is closed.

Suppose that y, — y where y,, € L. So, we can assume that v, = P(x,) with 2, € H. So, Py, =
P(Px,) = Pz, = Px, =y, and the continuity of P implies that Py,, — Py, ie, y, — Py.

So,y = Pyandy € L.

Now, for z, 2’ € H

(x — Pz, Px') =
P(x — Px),2') [since P* = P]

So,z — Px L Px'.

Since, 2’ is an arbitrary element in H, we have z — Px | L.

Now, x = Px + (x — Px), where Pz € L and (x — Px) L L. So, P is a projection operator on L. This
proves the theorem. O

Definition 6.0.3. The projection operators P; and P; are called orthogonal if P, P» = 0, zero operator.

Theorem 6.0.4. Two projection operators P, and P» are orthogonal iff their corresponding subspaces L; and
Lo are orthogonal to each other, i.e. L; L Lo.

Proof. If PP, = 0, thenif x; € Ly and x5 € Lo, we have,

(x1,22) = (Prx1, Poxo) = (21, P Px2)
(21, P1Pox2)
= (1’1, 9) = 0

sothat L; 1 Lo.
If L1 1 Lo, then because for all x € H Pyx € Lo, it follows that Pox L L.
So, Pox = 0 + Pyx, where § € L1 and Pox | L.
Therefore,

PPy =60 forxe H
ie. P1P2 =0

This proves the theorem. O

Theorem 6.0.5. The sum of two projection operators Pr,, and P, is a projection operator iff these operators
are orthogonal. If Pr, is orthogonal to Pr, then Pr,, + Pr, = Pr,or1,-
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Proof. Necessity: Let Pr,, + P, be a projection operator.

So (PL1+PL2)2:PL1+PL2
1.e. P£1+P£2+PL1PL2+PL1PL2 =P, + P,
ie. Pr, P, + Pr,Pr, =0

We operate by Pr,, on the left and obtain that

P; Pr,+ P, Pr,Pp, =0
i.e. Pr, Pr,+ Pr,Pr,Pr, =0 (6.0.1)

If we now operate by Pr,, on the right then we obtain that

Py, Pp,Pp, + P, PP}, =0
ie. PL1PL2PL1 =0 (6.0.2)

So, from (6.0.1) and (6.0.2), Pr,, Pr, = 0. This proves the necessity part of the theorem.
Sufficiency: Let Pr, Pr, = Pr,Pr, = 0 then

(P, + Pp,)* = Pi +2P, P, + Pf,
= P, + P
and, (Pr, + Pr,)" = Pfl + Pz2 =Py, + Pr,

Therefore, (Pr, + Pp,) is a projection operator. Suppose, now that Pr,, P, = 0, so that by earlier theorem
Li 1 Lo. If P= Pr,, + P, and z € H, then,

Pz = (PL1 + PL2)LU = PLll‘ + PLQJ,‘ S PL169L2

Also,
(x — Px,Px) = (P*(x— Px),x)
(Px — P?z,2) =0
ie. r—Px L Pz
So,
x = Px + (x — Px), where Pz € Pr 0L,

and $—P{L‘L(L1@L2)

So, P is a projection operator on L1 & Ls. This proves the theorem. O

Theorem 6.0.6. The product of the projection operators Pr,, and Pr, is a projection operator iff Pr,, and Pr,
are permutable. If this condition is satisfied then Pr,, Pr, = Pr,nL,.

Proof. Suppose that Pr,, Pr, is a projection operator. Then
(P, Pr,) = (P, Pr,)*" = P, Pr, = P, Pr,

and the permutability is obtained.
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Sufficiency: Suppose that Py, P, = Pr, Py, then,
(PL1PL2)* = PEQPEI = PLQPLl = PL1PL27

so that, Pr,, Py, is self-adjoint.
Also,
(PL1PL2)2 =Py, Pr,Pr, P, = Pp,Pr PP,
= P; P} =P.PpL,

So, Pr,, P, is a projection operator.

Third part: Now suppose that Pr,, Pr, = Pr,Pr, and let z € H be arbitrary.
If P = P, P, then,
Px = PL1PL2$ = PL2PL1£L'

lies both in L and Ly and so lies in L1 N Ls.
If y € Ly N Lo, then,
Py = Pp,(Pry) = Pry=y

Ifnowx € H andy € L1 N Lo then

(x — Px,y) = (x — Px,Py) = (P*(x— Px),y)
= (Px— P%z,y)
= 0,

sothat,z — Pz L L — 1N Lo.

Therefore, any x € H has a representation x = Pz + (z— Px), where Pz € L1NLg and x— Px € L1NLo.

So, P is a projection operator on Lj N Lo.

6.0.2 Some results for P, ~ P,

Proof. Necessity: Suppose that P; — P> is a projection operator. Then,

P, —Py=(P,—P)? = P}—PP,— PP + P}
= P— PP - PP+ P,

so that,
PP+ PP, =25

Operating by P; from the left and from the right, we get that
PP+ PP, =2P P,

since P12 = Pl, P1P2P1 = P1P2.
Again, operating from the right, we get

PPy + P PPy = 2P Py
= P PP =PP

Hence, P1P2P1 = P1P2, P1P2P1 = P2P1 and by (603) P1P2 = P2P1 = PQ.
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Sufficiency: Let Pi P> = Py ie. (P1P2)* = Py then PP = Ps.
If P= P, — P, then

P2=(P-P)? = P—-PP-PP+P
= PP-PBPL=P-P=P

and P* = (P — P;)* = P,— P, = Pi.e. P = P, — P, is a projection operator. This proves the theorem. []

Definition 6.0.7. Let, H be a Hilbert space and A be continuous linear operator such that A : H — H.
If X C H,let A(X) = {A(z) : x € X}. A closed subspace M of H is said to be invariant under A if
A(M) C M.

If both M and M~ are invariant under A, then we say that M reduces A or that A reduced by M.

Theorem 6.0.8. A closed subspace M of H is invariant under A iff M~ is invariant under A*.

Proof. Suppose that, M is invariant under A. If y € M~ then Az L yforallz € M,ie. (Az,y) = 0. But
(Az,y) = (z, A*y). So, (z, A*y) = 0,ie. A*y L xfory € M*. So, A*y € M+, Vy € M+,
This however implies that A*(M ) ¢ M~. So, M~ is invariant under A*.

Converse part: Let, M~ be invariant under A*. Then what we have just shown (M=) will be invariant
under (A*)*.

We know that for a closed subspace M of a Hilbert space H, (M+)+ = M.

Also, we have shown earlier (A*)* = A.

Therefore we may conclude that M is invariant under A. This proves the theorem. O

Theorem 6.0.9. A closed subspace M of H reduces A iff M is invariant under both A and A*.

Proof. Suppose that, M reduces A, then by definition both A and M+ are invariant under A. Now by earlier
theorem (M =)+ is invariant under A*,i.e. M is invariant under A*.

Converse part: Suppose now that M is invariant under both A and A*. Then by an earlier theorem M=+
is invariant under A**. But A** = A. So, M and M+ are both invariant under A. So, M reduces A. This
proves the theorem. 0

Problem 6.1. If P is a projection operator on a closed subspace M of H then M is invariant under a contin-
uous linear operator T iff 'P = PTP.

Solution. If M is invariant under T and x € H then T Px is in M and so,
PTPx =TPx

So, PTP=TP;Vx € H.
Conversely if TP = PI'Pand x € M, then T'x = T'Px = PT Px € M. So, M is invariant under 7. W

Problem 6.2. If P is a projection on a closed subspace M of H then M reduces to a continuous linear operator
Tiff TP = PT.

Solution. By earlier theorems, M reduces 7" iff M is invariant under 7" amd 7™ i.e. if and only if TP = PTP
and T*P = PT*P.
But T* P = PT™*P is equivalent to
(PT)* = (PTP)"
ie. PI' = PTP.
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So, M reduces T iff 'P = PTP and PT = PTP.
Suppose that, M reduces T, then from above PT = T P.
Conversely if, PT' = T'P, then

PTP = TP?
= PTP TP [since P? = P]
and P?T PTP
ie. PT = PTP,

So, M reduces T'. |

Definition 6.2.1 (Closed Linear Transformation). Let X and Y be normed linear spaces and M is a subspace
of X. Then a linear transformation 7" : M — Y is said to be closed if, x,, — x, where z,, € M and
Tz, —y. Thenz € M andy = T'x.

6.2.1 Open Mapping Theorem
Some Definitions

Definition 6.2.2 (Continuous). Let (X, d) and (Y, p) be metric spaces. We say that a function f : X — Y'is
continuous on X if for every open set U in Y, the inverse image f~!(U) is open in X, i.e. the inverse image
of an open set is open. Equivalently, the inverse image of a closed set is closed.

Definition 6.2.3 (Open map). Let (X, d) and (Y, p) be metric spaces. We say that a function f : X — Y is
open if for every open set G in X, the image f(G) is open in Y, i.e. the image of an open set is open.

Definition 6.2.4 (Closed map). Let (X, d) and (Y, p) be metric spaces. We say that a function f : X — Y
is closed if for every closed set F'in X, the image f(F) is closed in Y, i.e. the image of a closed set is closed.
Notations
1. Bx(zg,r) ={z € X : ||z — x¢|| < r} is an open ball centered at x( with radius 7 in X.
2. Bx(zo,r)+2z={x+ z:x € Bx(xo,7)} where z € X.
It is easy to verify that Bx (0, r) + xo = Bx(xo,r).
3. ¢Bx(xzg,r) = {cx : x € Bx(xg.r)} where cis scalar. It is easy to verify that Bx (0,r) = rBx(0,1).

Lemma 6.2.5 (Open unit ball). Suppose 7" is a bounded linear operator from a Banach space X onto a Banach
space Y. Then By (0,7) C T(Bx(0,1)) for some r > 0.

1
Proof. Claim-1: By (yo,d) C T (BX (0, 2>> for some § > 0. We can write

k 1 k
X =Up2Bx (0, 2> = Up-kBx (0, 2> , sincex € X, [jz|| < > for some k
Thus,
T(X)=UgZ,T|{Bx (0, 5 = Up kT ( Bx ( 0, 5 ) ) since T is linear

1 1
= Y =Up kT (BX (0, 2)> = U kT (BX (0, 2)), [ since 7" is onto].
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Since Y is a Banach space and using Baire’s category theorem, we get the interior of k7’ (B X (O, %)) is non-

1 1
empty for some k. Therefore, the interior of T’ <BX (0, 2>> is non-empty, By (yp,6) C T <BX (0, 2> > .

. o 1
Claim-2: By (o, 2—n) cT <BX <O, 2n)> ,Vn > 0.
It is enough to show that for n = 0, By (0,d) C T(Bx(0,1)).

1
Let y € By(0,0). Then y + yo € By(yo,0) C T (BX (O, 2)) By definition of closure of a set,

1 1 1
Ju, €T <BX <0, 2)>,wn € Bx (0, 2> such that T'(wy,) = uy, — y + yo and v, € T <BX (0, 2>>,

1
zn € Bx (0, 5 such that T'(z,) = v, — yo. From this, we get u,, — v, = T(w,, — z,,) — y. Notice that

|wn, — 2zn]| < 1, s0 we gety € T(Bx(0,1)). Therefore, we get By (0,9) C T(Bx(0,1)).

Claim-3: By (0, g) C T(Bx(0,1)).

) 1 1
Let,y € By (0, 2>. Then by the above Claim-2,y € T (BX <O, 2>> So there exists x1 € By (0, 2)

4
such that ||y — Tz || < T

0 1
Now y — Tz € By <0, 4). Again by the above Claim 2, y — T'xy € T (BX (O, 4> ) So, there exists
1
To € Bx (0, 4) such that

5
ly = Ty — Taaf| < .

1
By repeating this procedure and using induction, we get a sequence x,, € Bx (0, 2n> such that

J

n
y— Z Txy
k=1

n
Define z,, = Z . Then

k=1
n

1
20 = 2m| < Z ok

k=m-+1

is a Cauchy sequence in X. Since X is Banach space, {z,} converges to a element z € X and ||z| < 1.
From the equation (6.2.1), we have T'z, — y. Since T is continuous, we get T'x = y. Therefore, y €
T(Bx(0,1)). O

Theorem 6.2.6 (Open Mapping Theorem). Suppose 7' is a bounded linear operator from a Banach space X
onto a Banach space Y. Then 7' is an open map.

Proof. Let, G be an open subset of X. We have to show that 7'(G) is open in Y. Let, y € T(G). Then
we have a x € G such that T'x = y. Since G is open, there exists a € > 0 such that By (z,¢) C G. Thus,
Bx(0,¢) C G\ {x}.
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By the above lemma, 9 a § > 0 such that

By(O,(S) C T(B)((O, 1))
= eBy(0,8) C €T (Bx(0,1)) =T(Bx(0,1)) =T(Bx(0,¢))
C T(G\{z})=T(G)\T({z}) =T(G) \ y [since T is linear]

So, we get By (0,€d) +y C T(G). Therefore, y is an interior point of 7'(G). Hence, T'(G) is open in Y. This
proves the theorem. O

6.2.2 Closed Graph Theorem

In this section, we introduce closed linear operators which appear more frequently in the application. In
particular, most of the practical applications we encounter unbounded operators are closed linear operators.

Definition 6.2.7. Let X and Y be normed linear spaces. Then a linear operator 7' : X — Y is said to be
closed operator if for every sequence {z,, } in X such that,

Tp =2 and Tz, -y =Tz =y.

Definition 6.2.8 (Equivalent Definition). Define a normed space X x Y, where the two algebraic operations
are defined as,

(r1,y1) + (T2,92) = (21 + 22,91 +y2)
a(z,y) = (az,ay)

and the norm on X x Y is defined by
Iz o)l = Ml + llyll

Then a linear operator 7' : X — Y is closed operator if the graph of T, G(T') = {(z,Tz) : x € X} is
closedin X x Y.

Example 6.2.9. Consider the differential operator T : f — f’ from (C*[a, b], ||.]|oo) to (C[a, b], ||.||ec). We
know that, the operator is not continuous. Now we show that the operator is closed using uniform convergence
property. Let {(fn, f},)} be a sequence in G(T') such that (f,,) converges to f and f/, converges to g in sup-
norm. We have to show that g = f’. Using fundamental theorem of integral calculus, we write

fol@) = ful) + [ ity
f(z) = f(a)+ /x g(t)dt (asn — o0)

The result follows by fundamental theorem of integral calculus.

Remark 6.2.10. Continuous linear operator = Closed linear operator.

The converse is not true(see the above example). Under certain conditions, the converse is true which is
stated as,

Theorem 6.2.11 (Closed Graph Theorem). Statement: If X and Y are Banach spacesand 7' : X — Y is
linear operator, then
T is continuous = 7' is closed.
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Proof. If T is continuous, then 7" is closed.

Conversely, suppose T is closed operator. Then the graph of 7', G(T') is closed in X x Y. Moreover, it is
a subspace and so it is a complete space.

Define P : G(T') — X by P(x,Txz) = x. Itis easy to verify that P is continuous, injective and surjective.
By Bounded inverse theorem (6.2.12), P~ : X — G(T) is continuous, i.e., |P~1(z)| < c||z|,Vx € X
for some ¢ > 0. Hence T is bounded because of

[Tl < ([Tl + =l = [z, T2)]|
= || ()]
< c||z||,Vz € X.

This proves the theorem. O

Theorem 6.2.12 (Bounded inverse theorem). If X and Y are Banach spaces and 7' € B[X,Y] is injective
and surjective, then T-1 € B[Y, X].

Exercise 6.2.13. 1. Prove that, an operator 7" is a projection iff 7" = T*T.
2. If P and @) are non-zero projections and PQ = 0, then show that || P + Q| < ||P| + || Q|-
3. Show that, the null space N (T') of a closed linear operator 7' : X — Y is closed subspace of X.

4. Let (X, ||.||x) and (Y, ].]|y) be Banach spaces and 7" : X — Y be a surjective linear operator from
X onto Y such that 3¢ > OVz € X : ||Tz||y < ¢||x|x. Then T is bounded.
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Unit 7

Course Structure

* Unbounded operator: Basic properties, Cayley transform, change of measure principle, spectral theo-
rem.

7.0.1 Basic Properties

Definition 7.0.1. Let D be a subspace of a Hilbert space H. In this chapter D will almost never be closed.
An unbounded operator 7" in H with domain D is a linear mapping from D into H. We will write D(T") for
the domain of 7. T is densely defined if D(7T') is dense in H.

For an example, let H = L2[0,1],1et D = C'[0,1] and let T'f = f’. Note that T is not a bounded operator.
For another example, let D = {f € C?: f(0) = f(1) =0} and U f = f”. Then one can show that {—n?m?}
are eigenvalues.

Recall that G(T'), the graph of T, is the set {(z, Tx) : € D(T)}. If U is an extension of 7', that means
that D(T) € D(U) and Uz = Tz if € D(T). Note that U will be an extension of T"iff G(T') C G(U).
One often writes 7' C U to mean that U is an extension of 7.

A closed operator in H is one whose graph is a closed subspace of H x H. This is equivalent to saying
that whenever x,, — z and Tx,, — y, thenx € D(T') and y = Tx.

Proposition 7.0.2. If D(T') = H and T is closed, then 7" is a bounded operator.

Proof. Recall the closed graph theorem, which says that if M is a closed linear map from a Banach space to
itself, then M is bounded. The proposition follows immediately from this. O

Given a densely defined operator 7', we want to define its adjoint 7. First we define D(7™) to be the set of
y € H such that the linear functional [(x) = (T'z, y) is continuous(i.e. bounded) on D(T'). If y € D(T™), the
Hahn-Banach theorem allows us to extend [ to a bounded linear functional on H. By the Riesz representation
theorem for Hilbert spaces, there exists z, € H such that

l(z) = (x,2y), © € D(T)

Of course z, depends on y. We then define 7"y = z,.
Since T is densely defined, it is routine to check that 7 is well-defined and also that 7™ is an operator in
H, thatis D(T™) is a subspace of H and 7™ is linear.
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For example, let H = L2[0,1], D(T) = {f € C': f(0) = f(1) =0}, and Tf = f'. If f € D(T) and
g € C', then

1
(Tf.g) = /g f(@)g(x)de

1 J—
=¢mmeW@Afmwmm
= (1.9)

by applying integration by parts. Thus [(T'f, g)| < || f]|/l¢’|| is a bounded linear functional, and we see that
Clc D(T*)and T*g = —¢' if g € CL.
Some care is needed for the sum and composition of unbounded operators. We define

D(S+T) = D(S)nD(T)
and D(ST) = {xze€ D(T):Tx e D(S)}

Proposition 7.0.3. If S, T and ST are densely defined operators in H, then 7*S* C (ST)*. If in addition S
is bounded, then
T*S* = (ST)*.

Proof. Suppose x € D(ST) andy € D(T*S*). Since x € D(T) and S*y € D(T™*), then
(Tx,S*y) = (z, T*S™y).
Since T'x € D(S) and y € D(S*), then
(STzx.y) = (Tz,S™y).

Assume now that S is bounded and y € D((ST")*). Then S* is also bounded and D(S*) is therefore equal to
H. Hence,
(Tx,S*y) = (STz,y) = (z, (ST)*y)

for every x € D(ST). Thus S*y € D(T*), and soy € D(T*S*). O

An operator T in H is symmetric if (Tx,y) = (x,Ty) whenever z,y are both in D(7T'). Thus a densely
defined symmetric operator 7" is one such that T" C T™. If ' = T™, we say T is self-adjoint. Note that the
domains of 7" and T™ are crucial here. This is not an issue with bounded operators because every symmetric
bounded operator is self-adjoint.

Let us look at some examples. These will all be the same operator, but with different domains. Let H =
L?[0,1]. Let D(S) be the set of absolutely continuous function f on [0, 1] such that f’ € L2. Let D(T) be
the set of f € D(S) such that in addition f(0) = f(1), and let D(U) be the set of functions in D(S) such
that £(0) = f(1) = 0. Note that if f’ € L?, then

/S t f(2)dw

by Cauchy-Schwarz inequality, so functions in any of these domains can be well-defined at points.

The operator will be the same in case:

Sf =if’, and the same for T'f and U f provided f is in the appropriate domain. We see that U C T' C S.
We will show that 7" is self-adjoint, U is symmetric but not self-adjoint, and .S is not symmetric.

1
< et — ]2

[f(@t) = fs)| =
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By integration by parts,
1
(Tf.g) = /0 (if')g
1
= if(1)g(1) - if(0)g(0) - /0 i@
1
= if(D)g(1) — if(0)g(0) - /0 i 7).

Thus if f,g € D(T'), we have (T'f, g) = (f,Tg), since f(1) = f(0) and g(1) = ¢(0) for f,g € D(T).
Then some calculation with 7" replaced by S shows that .S is not symmetric. The calculation with T

1
replaced by U shows that U is symmetric. (T'f, g) = / (if")g shows that U C S*.
0

T

Suppose g € D(T™) and ¢ = T*g. Let ¢(z) = / ¢(y)dy. If f € D(T'), then
0

1
/0 if'g=(Tfg) = (f.6)
1
— F)B) - /0 Iz

the last equality by ’integration by parts’. Since D(T") contains non-zero constants, take f identically equal

1
to 1 to conclude that ¢(1) = 0. Therefore we have / f'G = 0 whenever f € D(T) and G = ig — ¢.
0

1
Taking the complex conjugate and replacing f by f, / f'/G=0if f € D(T).

0
We claim that G is constant (a.e). Suppose a < b is such that [a, a + h], [b, b + h] are both subsets of [0, 1]
and take f such that

X[b, b+ h]

1 1
- Bl — =
X|a,a + h] A

r=

Then f € D(T') and so

1 h 1 b+h
h/a G(x)dx — n ), G(x)dx =0

There is a set N of Lebesgue measure 0 such that if y € NV, then

1 y+h
- G(z)dr — G(y)
h Jy

Soifab ¢ N, taking the limit shows G(a) = G(b). Since we are on L2, we can modify G on a set of Lebesgue
measure 0 and take G constant.

This implies that g = —i¢ + c is absolutely continuous and ¢’ = —i¢ € L2. Also, g(0) = —i$(0) + ¢ =
—i¢(1) 4+ ¢, hence g € D(T'). Thus T* C T.

In the case of U: If g € D(U*) and f € D(U), then f(1) = 0 and so

1
[ ira=sws - [ ro=-[ 15
0
1
If G =ig — ¢, then / f'G = 0. As before G is constant, so g = —¢ + ¢, but now we no longer know that

0
¢(1) = 0. So g(1) might not be equal to g(0). Therefore U* C S.
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If g € D(S) and f € D(V), we have

Wha) = a0 - 050) + [ 16)
= (f,Ug).
Hence g € D(U*). Thus S C U*, and with the above U* = S. Hence U is not self-adjoint.
Proposition 7.0.4. Let H be a Hilbert space over C, A is self-adjoint. Then A is closed.

Proof. Ais closed: If z,, — = and Ax,, — u, then (Az,,y) = (x,, Ay) — (x, Ay) = (Az,y).
Also (Axy,y) — (u,y). This is true for all y, so Az = u. O

If A is defined on all of H and is self-adjoint, we conclude that A is bounded.
We say z is in the resolvent set of A if A — zI maps D one-to-one onto H.

Proposition 7.0.5. If z is not real, then z is in the resolvent set. Equivalently o(A4) C R.

Proof. 1. R =Range(A — zI) is a closed subspace.

R is equal to the set of all vectors u of the form Av — zv = w for some v € D. Then (Av,v) —z(v,v) =
(u,v).

A is self-adjoint, so (Av,v) = (v, Av) = (Av,v) is real. Looking at the imaginary parts,

—Im(zl|o]%) = Im(u, v)

So,
[Imzl|lv]* < Julllv],
I< ol
or, < —
Y |[Imz| "
1 .
If up, € R and u,, — u, then ||v, — vy,|| < Tz ||tn, — um]|, so vy, is a Cauchy sequence, and
mz

hence converges to some point v.

Since Av,, — zv, = u, — wu and zv, converges to zv, then Av, converges to u + zv. Since A is
self-adjoint, it is closed, and so v € D(A). Since (Av,, w) = (v,, Aw) forw € D, then (u+ zv,w) =
(v, Aw), which implies and Av = u + zv,oru = (A — z)v € R.

2. R = H. If not, there exists z # 0 such that = is orthogonal to R, and then
(Av — zv,x) = (Av,z) — (v,Z2) =0

forall v € D. Then (Av,x) = (v,Zx),sox € D and Az = Zx. But then (x, Ax) = z(x, =) is not real,
a contradiction.

3. A — zI is one-to-one. If not, there exists x € D such that (A — zI)x = 0.

1
But then ||z|| < | —— ] ||0]| =0, or z = 0.
|[Imz|
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If we set R(z) = (A — 2I)~! the resolvent, we have

1

R < .
IRG) < g

If u,w € H and v = R(z)u, then (A — z)v = u, and

(u, RZw) = (
= (v,(A—ZR(Z)w)

=

(

So the adjoint of R(z) is R(Z).
Theorem 7.0.6. Let A be a symmetric operator. A is self-adjoint if and only if 0(A4) C R.

Proof. That A is self-adjoint implies that all non-real z are in the resolvent set has already been proved. We
thus have to show that if A is symmetric and 0(A) C R, then A is self-adjoint.
If z,y € D(A),
((A— z)x,y) = <$7 (A - E)y>
If z is not real, then z ¢ o(A), so z — A is invertible and A — z and A — Z map D(A) one-to-one and onto H.
For f,g € H, we can define z = (A — 2)"!f and y € (A — Z)g, and we note that = and y are both in D(A).
We then have

(f.(A=2)""g)=((A~2)""f.9)

forall f,g € H.
Now we show that A is self-adjoint. Take z as non-real and suppose v € D(A*). Setw = A*v € H. We

have,
(Azx,v) = (x, A"v)

for all z € D(A). Subtract z(x, v) from both sides:

<(A - Z)ZIZ,’U> = <CE, (A* - E)v>
Letg= (A" —Z)vand f = (A — z)x. Then

(o) = (A= 2)z,0) = (&, (A" = 7))

= (A-2)7"f.9)=(f(A-2)""g).
The set of f of the form (A — z)x for x € D(A) is all of H, hence v = (A — z)~!, which is in D(A). In
particular D(A*) C D(A). We have (A —Z)v = g = (A* — Z)v, so A*v = Av. O
7.0.2 Cayley Transform

Definition 7.0.7. The mapping

t—1

t+1
sets up a one-to-one correspondence between the real line and the unit circle. This shows that every self-
adjoint T' € B(H) gives rise to a unitary operator

(7.0.1)

U= (T —il)(T+il)™* (7.0.2)
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and that every unitary U whose spectrum does not contain the point 1 is obtained in this way.

This relation T' <+ U will now be extended to a one-to-one correspondence between symmetric operators,
on the one hand, and isometries, on the other.

Let 7" be a symmetric operator in H.

Then
T2 +iz|* = |al* + || Tz|?
= ||Tz —iz|]?® [z € D(T)]. (7.0.3)
Hence there is an isometry U, with
DU)=R(T+il); RU)=R(T —i) (7.0.4)
defined by
UTx+ix)=Tx — iz [z € D(T). (7.0.5)

Since (T + iI)~! maps D(U) onto D(T'), U can also be written in the form

U= (T—il)(T+il)™" (7.0.6)
This operator U is called the Cayley transform of 7.
Alternative Definition

Define U = (A —i)(A +1i)~L. ‘
This is the image of the operator A under the function F'(z) = - Z
z 41

+
which maps the real line to § B(0,1) \ {1}, and is called the Cayley transform of A.
Proposition 7.0.8. U is a unitary operator.

Proof. A+ iand A — i each map D(A) one-to-one onto H, so U maps H onto itself.
U is norm preserving: Letu € H,v = (A + i) tu, w = Uu. So (A +i)v = u, (A — i)v = w. We need
to show ||u|| = ||w]|. We have,

[l

(A+1i)v, (A+1i)v)
| Av|)* + [Jo]|* + i(v, Av) — i{Av, v
= [|Av,v|* + |Jv||?

and similarly
lwll = (A = i)v, (A = i)v = | Av]|* + |lo]|*.

Proposition 7.0.9. Given A and U as above and F the spectral resolution for U, E({1}) = 0.

Proof. Write Ey for E({1}) = 0. If Ey # 0, there exists z # 0 in the range of E1, so z = Ejw. Then

Uz = /U(U) AE(dN)z = /U(U) AME — E1)d(N)z + /{1} AE1(dN)z

The first integral is zero since (F — F1)(A) and E; are orthogonal for all A.
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The second integral is equal to
Elz = E1E1w = Elw =z

since F is a projection.
We conclude z is an eigenvector for U with eigenvalue 1. So

(A—iD)(A+il) 2 =2

Letv=(A+il)"1z,0orz = (A+il)v.

Then,
z=(A—il)(A+il) 2 = (A —il)v,
and then 7v = —iv, so v = 0 and hence z = 0, a contradiction. O
Lemma 7.0.10. Suppose U is an operator in H which is an isometry: ||[Uz|| = ||z|| for every z € D(U).

a) If x € D(U) and y € D(U), then (Uz, Uy) = (z,y).
b) If R(I — U) is dense in H, then I — U is one-to-one.
¢) If any one of the three spaces D(U), R(U) and ((U) is closed, so are the other two.

Theorem 7.0.11. Suppose U is the Cayley transform of a symmetric operator 1" in H. Then the following
statements are true:

a) U is closed if and only if T is closed.

b) R(I —U) =T, I — U is one-to-one, and 7" can be reconstructed from U by the formula
T=i(I+U)(I-U)"
(The Cayley transforms of distinct symmetric operators are therefore distinct).
¢) U is unitary if and only if 7" is self-adjoint.

Conversely, if V' is an operator in H which is an isometry, and if I — V is one-to-one, then V' is the Cayley
transform of a symmetric operator in H.

Proof. T is closed if and only if R(T + ¢I) is closed. By the above lemma, U is closed iff D(U) is closed.
Since D(U) = R(T" + iI), by the definition of the Cayley transform, (a) is proved.
The one-to-one correspondence x <> z between D(T) to D(U) = R(T + iI), given by

z=Trx+1ix, U=Txr —1x (7.0.7)

can be rewritten in the form
(I-U)z=2iz, (I+U)z=2Tx (7.0.8)

This shows that I — U is one-to-one, that R(T + i) = D(T'), so that (I — U)~! maps D(T) onto D(U), and
that
2Tz = (I +U)z = (I + U)(I — U)"Y(2iz) [z € D(T)] (7.0.9)

This proves (b).
Assume now that 7' is self-adjoint. Then

RI+T*=H (7.0.10)
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Since,
(T—l—iI)(T—iI):I+T2:(T—z’I)(T—i—z’I) (7.0.11)

[the three operators (7.0.11) have domain D(7?)]
it follows from (7.0.10) that

S
S
[

R(T + i)
and R(U) =R(T —il)

(7.0.12)

- H
= . (7.0.13)

Since U is an isometry, (7.0.12) and (7.0.13) imply that U is unitary.
To complete the proof of (c), assume that U is unitary. Then
[R(I = U)[F = N(I - U) = {0},

by (b) and the normality of I — U, so that D(T') = R(I — U) dense in H. Thus, 7" is defined, and T C T™.
Fix y € D(T™). Since R(T + iI) = D(U) = H, there exists yg € D(T’) such that

(T* +il)y = (T +il)yo = (T* +il)yo. (7.0.14)
The last equality holds because T' C T*. If y; = y — yo, then y; € D(T*) and for every = € D(T).
(T —il)z,y1) = (x,(T* +il)y1) = (,0) =0 (7.0.15)
Thus,y L R(T —iI) = R(U) = H,andsoy; = 0,andy = yo € D(T).

Hence T* C T, and (c) is proved.

Finally, let V' be as in the statement of the converse. Then there is a one-to-one correspondence z < x
between D(V') and R(I — V'), given by

r=z2-Vz (7.0.16)

Define S on D(S) = R(I — V) by
Sz =i(z+Vz) ifz=z—Ve (7.0.17)

If v € D(S)andy € D(S),thenx = z — Vzand y = u — Vu for some z € D(V) and w € D(V). Since V'
is an isometry, it now follows from (a) of the lemma, that

(Sz,y) = i(z+Vau—Vu)=i(Vzu) —i(z,Vu)
= (z—=Vzjiu+iVu) = (z,Sy)

Hence S is symmetric. Since (7.0.17) can be written in the form

2iVz = Sx — iz, 2iz=Sz+iz [z€DV)] (7.0.18)

We see that
V(Sz +ix) = Sx — iz [z € D(9)] (7.0.19)
and that D(V') = R(S + I ). Therefore V is the Cayley transform of S. O
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7.0.3 Change of measure principle

Suppose
(a) R and R’ are o-algebras in sets € and €/
(b) E: R — B(H) is a resolution of the identity, and
(c) ¢:Q — Q has the property that ¢! (w') € R for every w’ € R'.

If E'(w') = E(¢~(w')), then E' : R — B(H) is also a resolution of the identity, and

/ fdE,, = / (fod)dEs,y (7.0.20)
Q' Q
for every R'-measurable f : ' — C for which either of these integral exists.

7.0.4 Resolution of the Identity

Notation R will be a o-algebra in a set 2, H will be a Hilbert space, and E : R — B(H) will be a resolution
of the identity.

7.0.5 Spectral Theorem

Proposition 7.0.12. Let M be a bounded operator and f a measurable function. Let

Dy = {x 3 1 @ () < oo}

Then
(1) Dy is a dense subspace of H.

2) Ifx,y € H,

N

/ @) Pt (V) < [y ( / SO x ux,m))
o (M) o (M)

(3) If f is bounded and v = f(M )z, then

paw(dN) = fF(N) g - (dX), x,z € H.

Proof. (1) LetS Co(M)andz=x+y.

1E(S)=|? UES)z|l + [1E(S)yll*)

|
2| E(S)|l* + 21 E(S)y*

VANVA

So,
MZ,z(S> < 2Ma:,fﬂ<s) + 2Hy,y(5)

This is true for all .S, so
foz 2 (AN) < 245 o (dAN) + 2p1y 4, (dN)
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This proves that Dy is a subspace. Let, S,, = {\ € (M) : |f(A)| < n}. Thenif x = E(Sy)z,

E(S)z = E(S)E(Sn)E(S,)z
= B(SNSw)E(Sn)z = E(SN Sy,

SO
ﬂr,w(s) = .U:E,m(S N Sp).

Then

/ @) Prsa(d)) = / (@) Pt (V)
o(M) Sn

n?|z||? < oc.

IN

To see this last line, we know it holds when |f|? is replaced by g and g is the characteristic function
of a set. It holds for g simply by linearity, and then it holds for g = |f|?> by monotone convergence.
Therefore the range of E(S,,) C D(f). o(M) = U,Sy, so

IES)y —yl? = E(Su)(y) — E(a(M))(y)|
— [ ho D\ S0 Pt (@) — 0
by dominated convergence. Hence y is in the closure of Dy.

(2) If x,y € H, f is bounded,
FX) iy (dX) << [f (M) ptay|(dA),

so there exists u with |u| = 1 such that

W) )ty (@) = [ty (@0):
Hence
/ F@)aa(d) = (uf(M)z,3)
o(M)
luf A)zllly]l

IN

But
luf (M) = / ufPdpise = / P dba.

So, (2) holds for bounded f. Now take a limit and use monotone convergence.

(3) Let g be continuous.

[ gdins = (g00)2.0) = (g0, SO1)2)
o(M)
~ (T ) = [ gFdpe.
this is true for all g continuous, so dj; ; = ?dux,z.
Theorem 7.0.13. Let E be a resolution of the identity.
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(1) Suppose f : o(M) — C is measurable. There exists a densely defined operator f(M) with domain
Dy and

mme::/ijme>
\WMMIZQAMV@WMAM) (7.021)

(2) If Dyg C Dy, then f(M)g(M) = (fg)(M).

(3) f(M)* = f(M)and f(M)f(M)* = f(M)*f(M) = |f]?M.
Proof. (1) If x € Dy, then l(y) = / fdpizy is a bounded linear functional with norm at most
o(M)

(/ ]f\Qdux,x)% by (2) of the preceding proposition. Choose f(M )z € H to satisfy (1) for all y.

Let f, = fx(|f| <n). Then Dy — f,, = Dy since / |f — fal?dpts . is finite if and only if/ FaRz/T
is finite, using that f,, is bounded. By the Dominated convergence theorem,

HﬂMnaMMMPS/

\f = fal*dpize — 0.
o(M)
Since f,, is bounded, (7.0.21) holds with f,.
Now let n — oo.
(2) : Define g, = gx(|]g| < m). Since f,, and g, are bounded, (2) follows for f,, gn,. Now let m — oo
and then n — oo.

(3) We know this holds for f,, since f,, is bounded. Now let n — oc.
O

Theorem 7.0.14 (Spectral Theorem). Let A be a self-adjoint operator on a Hilbert space over the complex

numbers. There exists a resolution of the identity E such that, A = .
o(A)zE(dz)
Proof. Start with the unbounded operator A. Let U = (A—iI)(A+il )jl Then U is unitary with a spectrum
on 6B(0,1) \ {1}. Let the resolution of the identity for U be given by E.

Let us define ¢ = F~!, which is a map taking §B(0, 1) \ {1} to R. Thus

o) =112

We check that A = ¢(U). Since the range of ¢ is R, then ¢(U) is self-adjoint. Since ¢(z)(1 — 2z) = i(1 + 2),
the above theorem implies that,

»(U)(I —U) =i + U).

In particular, the range of I — U is contained in the domain of ¢(U). From the definition of the Cayley
transform, we have
A(I-U)=14¢I+1U)

and the domain of A is equal to the range of I — U. Thus A C ¢(U). Since both A and ¢(U) are self-adjoint,
¢(U) = ¢(U)" C A" = A C ¢(U),
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and hence A = ¢(U).
Let E(S) = E(¢~(S)). We have

(Az,y) = (¢(Uz,y)

= (2){E(dz)z, y).
o(U)

By the change of measure principle, this is equal to / 2(E(dz)x,y). O
o(A)

Exercise 7.0.15. 1. The associative law (717%)73 = T1(72T3) has been used freely throughout this chap-
ter. Prove it. Prove also that T} C T» implies ST; C STy and T1S C T5S.

2. Suppose 1" is densely defined, closed operator in H, and 7% C TT*. Does it follow that 7" is normal?

3. Suppose T is densely defined operator in H, and (T'z, z) = 0 for every = € D(T'). Does it follow that
Tz = 0 forevery x € D(T)?

4. Let H? be the space of all holomorphic functions f(z) = >_ ¢,2" in the open unit disc that satisfy,
oo
IF17 =D leal® < 00
n=0

Define V now by, (V f)(z) = zf(z?). Show that V is an isometry which is the Cayley transform of a
closed symmetric operator 7" in H2, whose deficiency indices are 0 and cc.

5. Suppose T is a closed operator in H, D(T) = D(T*), and ||Tz|| = || T"*z|| for every = € D(T). Prove
that 7" is normal.

[Hint: Begin by proving that (T'x, T'y) = (T*z,T*y),x € D(T),y € D(T)]
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Unit 8

Course Structure

* Compact map: Basic properties, compact symmetric operator, Rayleigh principle, Fisher’s principle,
Courant’s principle, Mercer’s theorem, positive compact operator.

8.0.1 Basic Properties

A subset S is precompact if S is compact. Recall that if A is a subset of a metric space, A is precompact iff

every sequence in A has subsequene which converges in A. Also, A is compact iff A is complete and totally
bounded.

Write B for the unit ball in X.

A map K from a Banach space X to a Banach space U is compact if K (Bj) is precompact in U.

One example is if K is degenerate, so that Ry is finite dimensional. The identity on /2 is not compact.
The following facts are easy:

1) If C1, Cs are precompact subsets of a Banach space, then C; + Cs is precompact.
2) If C is precompact, so is the convex hull of C'.
3) If M : X — U and C is precompact in X, then M (C) is precompact in U.
Proposition 8.0.1. (i) If K; and K> are compact maps, so is K K1 + Ko.
(i) If X Lu %, where M is bounded and L is compact, then M L is compact.
(iii) In the same situation as (ii), if L is bounded and M is compact
(iii) In the same situation as (ii), if L is bounded and M is compact, then M L is compact.
(iv) If K,, are compact maps and lim|| K, — K| = 0, then K is compact.
Proof. (i) For the sum, (K + K2)(B1) C Ki1(B1) + K2(B2) and the multiplication by K is similar.
(ii) M L(B) will be compact because L(B) is compact and M is continuous.
(iii) L(By) will be contained in some ball, so M L(B) is precompact.
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(iv) Let € > 0. Choose n such that || K,, — K|| < €. K,,(Bj) can be covered by finitely many balls of radius
€, so K(By) is covered by the set of balls with the same centres and radius 2e. Therefore K (B1) is
totally bounded.

O

We can use (iv) to give a more complicated example of a compact operator.
Let, X = U = [? and define

aip a2 as
K(CLl,CLQ,"'): <?7?7§7)

It is the limit in norm of K,,, where

a, as as a
Ky(ai,a2,---) = ( = >

e s J
27227237 72n77

Note that any bounded operator K on [? maps B; into a set of the form [—M, M]Y. By Tychonoff, this is
compact in the product topology. However it is not necessarily compact in the topology of the space /2.

Proposition 8.0.2. If X and Y are Banach spaces and K : X — Y is compact and Z is a closed subspace
of X, then the map K|z is compact.

Let A be a bounded linear operator on a Banach space. If z is a complex number and [ is the identity
operator on H which might or might not be invertible. We define the spectrum of A by

o(A) ={z € C: I — Aisnotinvertible}.

We sometimes write z — A for zI — A. The resolvent set for A is the set of complex numbers z such that z — A
is invertible. A non-zero element z is an eigenvector for A with corresponding eigenvalue A if Az = Az.

Compact Symmetric Operator

If A is bounded operator on H, a Hilbert space over the complex numbers, the adjoint of A, denoted by A*,
is the operator on H such that (Ax,y) = (x, A*y),Vz and y.
It follows from the definition that the adjoint of cA is ¢A* and the adjoint of A™ is (A*)".

n n
If P(z) = a; Al willbe P(A*) =) " a@;P(A").
=0 =0

The adjoint operator always exists.

Proposition 8.0.3. If A is a bounded operator on H, there exist a unique operator A* such that (Az,y) =
(x, A*y), Vx and y.

Proof. Fix y for the moment. The function f(x) = (Ax,y) is a linear functional on H. By the Riesz
representation theorem for Hilbert spaces, there exists z, such that (Az,y) = (z, 2,), Vz. Since,

(@, 2g1492) = (Az,y1+y2)
<A337 y1> + <A$7 y2>
= <$7Zy1> + <$,Zy2>
for all , then zy, 4., = 2y, + 2y, and similarly z., = cz,. If we define A*y = z,, this will be the operator
we seek.

If A; and Ay are two operators such that (x, A1y) = (Az,y) = (x, A2y), Vx and y, then Ay = Agy, Yy,
s0 A1 = As. Thus the uniqueness assertion is proved. 0
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A bounded linear operator A mapping H into H is called symmetric if
(Az.y) = (z, Ay) (8.0.1)

for all x and y in H. Other names for symmetric are Hermitian or self-adjoint. When A is symmetric, then
A* = A, which explains the name "self-adjoint".

Example 8.0.4. For an example of a symmetric bounded linear operator, let (X, A, 1) be a measure space
with 1 and o-finite measure, let H = L?(X), and let F'(z,y) be a jointly measurable function from X x X
into C such that F'(y, z) = F(z,y) and

//F(z,y)2,u(dx)u(dy) < 0. (8.0.2)

Define A: H — H by
Af(@) = [ Fa)swhtdy) 303
You can check that A is a bounded symmetric operator.

Here is an example of a compact symmetric operator.

Example 8.0.5. Let H = L%([0,1]) and let F : [0,1]> — R be a continuous function with F(z,y) =
F(y,x) for all x and y. Define K : H — H by

1
Kf(x) = /0 F(a.y)f(y)dy.

We discussed in previous example that K is a bounded symmetric operator. Let us show that it is compact.
If f € L2([0,1]) with || f|| < 1, then

ki@ - K1) = |[ [F(x,y)—F(w’y)}f(y)dy'

IN

(f P (ey) - F(x’y)\%zy>é T

using the Cauchy-Schwarz inequality. Since F is continuous on [0, 1]?, which is a compact set, then it is
uniformly continuous there.
Let € > 0. There exists d such that

sup sup|F(z,y) — F(2',y)| <e.
le—a’|<6 Y

Hence if |z —2'| < §, then |K f(x)— K f(2')| < e forevery f with || f|| < 1. In other words, { K f : || || < 1}

is an equicontinuous family.
Since F' is continuous, it is bounded, say by /V, and therefore

1
K f(z)] < /O NIf()ldy < NII£.

again using the Cauchy-Schwarz inequality.

If K f,, is a sequence in K (By), then { K f,, } is a bounded equicontinuous family of functions on [0,1], and
by the Ascoli-Arzela theorem, there is a subsequence which converges uniformly on [0,1]. It follows that this
subsequence also converges with respect to the L? norm. Since every sequence in K (B1) has a subsequence
which converges, the closure of K (B;) is compact. Thus K is a compact operator.
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We have the following proposition.

Proposition 8.0.6. Suppose A is a bounded symmetric operator.
(1) (Az,x)isreal forallz € H.
(2) The function x — (Ax, z) is not identically O unless A = 0.
3) [|All = supjjy =1 [(Az, ).

Proof. (1) This one is easy since

(Az,x) = (x, Az) = (Az, x)
where we use z for the complex conjugate of z.

(2) If (Az, z) = 0 for all z, then

0=(Az+y),z+y) = (Az,z)+ (Ay,y)
= <A$7y> + <yan>
= (dz,y) + (Az,y)

Hence, Re( Az, y) = 0. Replacing z by iz and using linearity,

Im((Az,y)) = —Re(i(Az.y))
— —Re((A(iz),y)) = 0.

Therefore, (Az,y) = 0 for all z and y. We conclude that Az = 0 for all 2 and thus A = 0.

(3) Let 8 = sup |(Az,x). By the Cauchy Schwarz inequality,
lzll=1

|(Az, )| < [|Az]|[lz]] < | A]l[l]
so, B < [|A].
To get the other direction, let ||z|| = 1 and let y € H such that ||y|| = 1 and (y, Ax) is real. Then
1
{y, Az) = 7 ((z +y, Az +y)) — (& —y, Alz —y))).

We used that
(y, Az) = (Ay, ) = (Az,y) = (z, Ay),
since (y, Ax) is real and A is symmetric.

Then

16[(y, Ax)]* < B(le +yll* + |z — yl*)?
4B%(lx* + [lyl*)?

1662
We used the parallelogram law [||z+y||? + ||z —y||* = 2||=||* +2]|y||?] in the 1st equality. We conclude
[(y, Az)| < B.
If ||y|| = 1 but (y, Az) = re® is not real. Let iy = e~y and apply the above with ¢/ instead of . We
then have

(y, Az)| = |(y/, Az)| < B.
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Setting y =
1Al < 5.

A
HTxH, we have ||Az| < [. Taking the supremum over = with ||| = 1 we conclude
x

O]

If (Az,z) > 0,Vx, we say A is positive, and write A > 0. Writing A < B means B — A > 0. For
matrices, one uses the words "positive definite".
Now suppose A is compact.

Proposition 8.0.7. If z, s then Ax,, >.

Proof. If z,, 2 x, then Az,, = Az, since (Ax,,y) = (x,, Ay) — (z, Ay) = (Az,y).
If x,, converges weakly, then ||«,,|| is bounded so Ax,, lies in a precompact set.
Any subsequence of Az, has a further subsequence which converges strongly. The limit must be Az. [

Lemma 8.0.8. If K is a compact operator and {z,, } is a sequence with ||z,,|| < 1 for each n, then { Kx,, } has
a convergent subsequence.

1 1 1
Proof. Since ||z, || < 1, then {2:cn} C Bi. Hence {2Kxn} = {K <2xn>} is a sequence contained in

K (By), a compact set and therefore has a convergent subsequence.
We now prove the spectral theorem for compact symmetric operators.

Theorem 8.0.9. Suppose H is a separable Hilbert space over the complex numbers and K is a compact
symmetric linear operator. There exist a sequence {z,} in H and a sequence { ), } in R such that

(1) {z,} is an orthonormal basis for H.
(2) each z, is an eigenvector with eigenvalue \,,, i.e. Kz, = \,z,.
(3) for each \,, # 0, the dimension of the linear space {z € H : Kz = \,z} is finite.

(4) the only limit point, if any, of {\,,} is 0; if there are infinitely many distinct eigenvalues, then 0 is a
limit point of {\, }.

Note that part of the assertion of the theorem is that the eigenvalues are real. (3) is usually phrased as saying
the non-zero eigenvalues have finite multiplicity.

Proof. If K = 0, any orthonormal basis will do for {z, } and all the \,, are zero, so we suppose K # 0. We
first show that the eigenvalues are real, that eigenvectors corresponding to distinct eigenvalues are orthogonal,
the multiplicity of non-zero eigenvalues is finite, and that O is the only limit point of the set of eigenvalues.
We then show how to sequentially construct a set of eigenvectors and that this construction yields a basis.

If A\, is an eigenvalue corresponding to a eigenvector z, # 0, we see that,

)\n<zna Zn> = <)\nzn7zn> = <Kznazn> = <ZnaKZn>

<Zn7 )\nzn> = )\7”<Zn, Zn>a

which proves that \,, is real.
If A\, # A\, are two distinct eigenvalues corresponding to the eigenvectors z, and z,,, we observe that

)\n<znyzm> = <)\nznvzm> = <KZn,Zm> = <ZnaKZm>

= <Zn7 )\mzm> = >\m<zn’ Zm>
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using that \,, is real. Since \,, # \,,,, we conclude (z,, z,,) = 0.
Since A, # 0 and that there are infinitely many orthonormal vectors xj, such that Kz = A\,z. Then

lzk — 25> = (@) — 25,20 — 3;)
= [zl = 2(zk, ;) + ||lz5] = 2

if j # k. But then no subsequence of \,x; = kzj can converge, a contradiction to the above lemma.
Therefore, the multiplicity of A, is finite.

Suppose we have a sequence of distinct non-zero eigenvalues converging to a real number A # 0 and a
corresponding sequence of eigenvectors each with norm one. Since K is compact, there is a subsequence
{n;} such that Kz, converges to a point in H, say w. Then

1 1
Zn; = )\—anznj — Xw.
or {2y, } is an orthonormal sequence of vectors converging to A~1w. But as in the preceeding paragraph, we
cannot have such a sequence.

Since {\,} C B(0,r(K)), a bounded subset of the complex plane, if the set {\,, } is infinite, there will be

a subsequence which converges. By the preceeding paragraph, 0 must be a limit point of the subsequence.

We now turn to constructing eigenvectors. We know that || K| = sup |(Kz,z)|.
llell=1
We claim the maximum is attained. If sup [(Kz,z)| = |[|K]|, let A = ||K]|; otherwise let A = —|| K.
llell=1
Choose x,, with ||z,| = 1 such that (Kx,,x,) converges to X\. There exists a subsequence {n;} such that

Kz, converges, say to 2. Since A # 0, then z # 0, for otherwise

A= lim (Kzp,,zn;) =0

j—o0

Now,
I = AD2 = T (K = DKy, |
j—00
< KJ[? lim [|(B — AL, |*
j—o0
and,
1K =ADz? = [Kan,|* + N[z, | = 2M@n,, Kan,)

< KPP+ A = 2Nz, K2y,)
= AN HN 22 =0.

Therefore, (K — AI)z = 0, or z is an eigenvector for K with corresponding eigenvalue .

Suppose, we have found eigenvalues z1, zo, - - - , z,. Let X, be the linear subspace spanned by {z1, 22, - , 2, }
and let Y = X be the orthogonal complement of X, that is, the set of all vectors orthogonal to every vector
in X,,. If xr € Y and K < n, then

(Kz,zp) = (v, Kzp) = )Tk(x,zk) =0,

or Kz € Y. Hence K maps Y into Y. It is an exercise to show that K|y is a compact symmetric operator. If
Y is non-zero, we can then look at K |y, and find a new eigenvector zy,1.

It remains to prove that the set of eigenvectors forms a basis. Suppose ¥ is orthogonal to every eigenvector.
Then

<Ky7 Zk?> = <y7KZk> = <y7 )‘kzk> =0.
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If z;, is an eigenvector with eigenvalue Ag, so Ky is also orthogonal to every eigenvector. Suppose X is the
closure of the linear subspace spanned by {z;}, Y = X+, and Y # {0}. If y € Y, then (Ky, z;) = 0 for
each eigenvector 2, hence (Ky, z) = Oforevery z € X,or K : Y — Y. Thus K|y is a compact symmetric
operator, and by the argument already given, there exists an eigenvector for K |y. This is a contradiction since
Y is orthogonal to every eigenvector. 0

Remark 8.0.10. If {z,} is an orthonormal basis of eigenvectors for K with corresponding eigenvalues A, let
E,, be the projection onto the subspace spanned by z,, i.e., E,x = (z, 2,)2,. A vector x can be written as
Z(:p, Zn)Zn, thus Kz = Z An{x, 2n) zn. We can then write, K = Z MEn.

n n

n
For general bounded symmetric operators there is a related expansion where the sum gets replaced by an

integral.
Remark 8.0.11. If z, is eigenvector for K with corresponding eigenvalue \,, then Kz, = A\, z,, so
K%z, = K(Kz,) = K(Anzn) = MK zn = (\n)*2,

More generally, K7z, = (A, )’ z,. Using the notation of the above Remark, we can write

K=Y (A E,.

n
If @ is any polynomial, we can then use linearity to write, Q(K) = Z QM) En,.

n
It is a small step from here to make the definition f(K) = Z f(An)E, for any bounded and Borel
n

measurable function f.
If oy > g > -+ > 0and Az, = o, 2, then our construction shows that

(Az,z)
(6% = max —a
N ote iz |22

This is known as the Rayleigh principle.

Let,
(Az, x)

Ry(z) = TE

Proposition 8.0.12. Let A be compact and symmetric and let ay; be the non-negative eigenvalues with a; >
ag > ---. Then

(1) (Fisher’s principle)

= ma, in R
o = max min fi(x)

where the maximum is over all linear subspaces Sy of dimension V.
(2) (Courant’s principle)
ay = min max Ra(z)

SN-—1xlSN_1

where the minimum is over all linear subspaces of dimension N — 1.
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Proof. Let z1, 22, - , zn be eigenvectors with corresponding eigenvalues a; > as > --- > apn. Let Ty
N

be the linear subspace spanned by {z1, 22, -+ ,2n}. If y € T, we have y = Z c;z; for some complex
j=1

numbers c¢; and then

N N
(Ay.y) = ZZC@<AZ¢72;‘>:ZZC@O&M%%}

i=1 j=1
= Z ‘Ci’204i > Z |Ci\204N
i i
= (v,y).
Using the fact that the z;’s are orthogonal by our construction.

(1) Let z; be the eigenvectors. Let S be a subspace of dimension N. There exists y € Sy such that
(y,z) =0fork=1,--- , N — 1. Since

ay = max Ry(x)
xlzi, 2N
then y is one of the vectors over which the max is being taken, so R4(y) < ay for this y. So,
minges, Ra(z) < ay. This is true for all spaces of dimension N. So, the right hand side is less than
or equal to ay.

Now we show the right hand side is greater than or equal to . Let Sy be the linear span of
{z1,- -+ ,2zn}. By the first paragraph of the proof, R4(x) > ay forevery x € Sy, and Rs(x) = ay
when z = zy. So, mingecg, Ra(z) = an. The maximum over all subspaces of dimension N will be
larger than the value for this particular subspace, so the right hand side is atleast as large as ay.

(2) Let Sy—1 be a subspace of dimension N — 1 and let Ty be the span of {z1,---,2zn}. Since the
dimension of T}y is larger than that of Sy _1, there must be a vector y € T perpendicular to Sy _1.
Since y € T, then R4(y) > ay by the first paragraph of this proof, so

max Ra(x) > Ra(y) > an.
rlSN_1

Taking the minimum over all spaces S _1 shows that right hand side is greater than or equal to ay.

o0
Ifx L Th_q1,thenx = Z cjzj, and then
j=N+1
o [o.¢]
(Az,x) = Z Z ciCrai (24, 2k)
j=N k=N
o0 o
= D ajlel <an ) gl
j=N j=N
= apn(z, ).

Therefore R4(z) < an. This leads to

i ax R < max R < ap.
BT, Ralo) = e, Fale) < o

Since Tv_1 is a particular subspace of dimension N — 1.
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Proposition 8.0.13. Suppose A < B with eigenvalues «ay, 5, respectively, ordered to be decreasing. Then
o < B, Vk.

Proof. A < B implies (Az,x) < (Bx,z), so Ra(x) < Rp(xz). Now use either Fisher’s or Courant’s
principle. O

8.0.2 Mercer’s Theorem

We will need to use Dini’s theorem from analysis.

Proposition 8.0.14. Suppose g,, are continuous functions on [0,1] with g, (x) < gp+1(x) for each n and z
and goo = limy, o0 gn () is continuous. Then g,, converges to g uniformly.

Proof. Let f,, = goo — gn, S0 the f,,’s are continuous and decrease to 0. Let € > 0. If G, (z) = {z € [0,1] :
fn(x) < €}, then G, is an open set(with respect to the relative topology on [0,1]), since f,, is continuous. Since
fn(x) — 0, each z will be in some G,,. Thus {G,,} is an open cover for [0, 1]. Let Gy,,, Gp,, -+ , Gy, be a
finite subcover. If n > max(ni, ng,--- ,nmy) and € [0, 1], then z is in some Gy, and f,,(z) < fr,(7) < e
Thus the convergence is uniform.

Define K : L?[0,1] — L?[0, 1] by

1
Ku(z) = / K (2, y)u(y)dy

K* has kernel K (y, ).
Suppose, K is continuous, symmetric and real-valued. Then K is compact, as we showed before. Therefore

there exist a complete orthonormal system {e;} of eigenvectors. Let K; be the eigenvalue corresponding to
ej. K: L — C[0,1],s0 ¢; = Kj_lKej is continuous if K; # 0. O

Theorem 8.0.15. Suppose K is real-valued, symmetric and continuous. Suppose K is positive (Ku,u) > 0
for all w € H. Then

K(z,y) = Z Kjej(x)e;(y)

and the series converges uniformly and absolutely.

An example is to let K = P, the transition density of absorbing or reflecting Brownian motion.

Proof. First we observe that K; are non-negative. To see this, let u = e;, and we have 0 < (e;, Ke;) =
Kj{ej, ej).
K > 0 on the diagonal: Suppose K (r,r) < 0 for some r. Then K(z,y) < 0if |z — 7|, |y — r| < J for

)
some 9. Take u = x|r — 77’—#].Then

272
(Ku,u) = //K(:L‘,y)u(y):v(s)dsdt <0,

a contradiction.
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Let Kny(z,y) = ZKe] Iff Zf,ek e, we have
k=1

1 N
Knfz) = /0 5" Kje;(2)e ()
=1
N J
= ) Kjlf.ej)e;(x)
j=1

ex)ex(y)dy
k=1

‘We have - -
Kf(x) =2 (fiejj(@) =) (fe;)Kje;(x
j=1 j=1

We conclude that K — Ky is a positive operator, since

(f,(K - Kn)f) = ZZK\feJ (e e5)
k=1 j=1
N
= Y [{fepP >0
j=1

As above, K — Ky is non-negative on the diagonal, which implies that
ZK\eJ W < K(z,z).

Each term is non-negative, so the sum converges for each z. Let J(x) be the limit. Let M = sup |K(x,y)|.
z,y€[0,1]
By Cauchy-Schwarz inequality

N|—=

K (2, y)]

IN

N 2 N
> Kjlej(z)? > Kjlei(y))?
j=1 j=1

1

= (Kn(z,2))3 (Kyn(y.9))2.

Fix x. By the same argument,

|
[SIES

Z Kjej(z)ej(y)| < Z Kjlej(z)? Z Kjlej(y)[?

NI

IA

n

1
S Kjley@)? | .
j=m

The last line goes to 0 as m,n — oo since Ky (z,x) — J(x) < M. Therefore for each x, the functions
Kn(z,.) converge uniformly. Let’s call the limit L(z, y). Then L(x,y) will be continuous in y for each x.

Given f, let
N

(fejej(x
Jj=1
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Note

N

Kfn(z) = Y (fe)Kej(x)
j=1
N

= Y (fe)K e (x)

=
= Knf(x).

We have,

o0

If =P = D e —0

j=N+1

as N — oo by Bessel’s inequality, so

|Kf(z) — K fn(z)]

IN

1
/0 K (2, 9) 1/ (9) — r(w)ldy
MIf — fyl

by Cauchy-Schwarz inequality. Therefore K f(z) — K f(z) as N — oc.
By Dominated convergence theorem,

IN

K f(x) = /0 Kn(e,y) f(y)dy — /0 Lz, 9)f (y)dy.

‘We therefore have,
1
| ey = £

for all f € L?[0,1]. This implies that(z is still fixed) K (x,y) = L(z,y) for almost every y. With x fixed,
both sides are continuous functions of y, hence they are equal for every y.

This is true for each x, and K(x,y) is continuous, hence L is continuous. We now can apply Dini’s
theorem to conclude that Ky (x,z) converges to L(x,z) = J(z) uniformly. Finally, again by Cauchy-
Schwarz inequality,

1

> Kjlej@)lle;w)] < | Y Kjlej(@)? > Kjlei(y)?
j=m j=m j=m

N[

and this proves that K (x,y) converges to K uniformly and absolutely. O

8.0.3 Positive Compact Operators

We will do the Krein-Rutman theorem, which is a generalization of the Perron-Frobenius theorem for matrices.

Theorem 8.0.16. Suppose ) is compact and Hausdorff and X = C(Q), the complex-valued continuous
functions on Q. Suppose K : C(Q) — C(Q) and K is compact. Suppose further that K maps real-valued
functions to real-valued functions. Finally, suppose that whenever f > 0 and f is not identically zero, then
K f is strictly positive. Then K f has a positive eigen value o of multiplicity one, the assigned eigen function
is positive, and all the other eigenvalues of K are strictly smaller in absolute value than o.
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Examples include matrices with all positive entries, the semigroup P, when ¢t = 1 for reflecting Brownian
motion on a bounded interval, and

Kf(x) = / K () (9)u(dy)

where K is jointly continuous, positive and y is a finite measure. We have seen that the operator K is compact.

Proof. If f < gand f # g,theng— f > 0,50 K(g— f) >0,or Kf < Kg.

Step-1: We show there exists a non-zero eigenvalue. Let f be the identically one function. Since K f is
continuous and everywhere positive, there exists a positive number b such that K f > b = bf.

If f and b are any pair such that f > 0, and K f > bf, then

Vf <bKf=K(bf) < K(Kf) = Kf

and continuing, " f < K™ f.
Since f > 0,
VA< (1K™ fIF < [[E(If1]-

So,
1
r(K) = lim ||[K"||» > b.

Therefore r(K) is strictly positive. Since K is compact, the set of eigenvalues of K is nonempty. We have
shown that there exists a non-zero eigenvalue for K. Moreover, any b that satisfies K f > bf for some f > 0
is less than or equal to r(K).

Step-2: K is compact, so there exists an eigenvalue A and an eigen function g such that Kg = g,
|A| = r(K). Let A and g be any pair with |\| = r(K).

(a) Weclaim: If f = |g| and 0 = |\|, thenof < K f.

Proof. Let x € Q). Multiply g by a € C such that |« = 1 and a\g(z) is real and non-negative. Of
course « depends on x. Write ¢ = u + ¢v. Then

Ku(z) +iKv(z) = Kg(z) = Ag(z).
Looking at the real part,
Ag(z) = (Ku)(x)
Next, u < |g| = f, and
(Alf(z) = [Ag(2)| = Ku(z) < (Kf)(x).

Then

of(x) < Kf(x). (8.0.4)
Although g depends on «, which depends on x, neither o nor f depend on x. Since x was arbitrary, the
above inequality (8.0.4) holds for all z. O

(b) Weclaim,of = Kf.

Proof. If not, there exists x such that o f () < K f(x). By continuity, there exists a neighbourhood N
about z such that

of(s)+e< Kf(s),se N
Let h > 0in N, O outside of N and so K'h > 0.
We will find ¢, e > O and set F' = f + €h, k = 0 + ce and get k' < K F. This will be a contradiction
to step-1: if bf < K f, then we know b < r(K); use this with b replaced by k and f replacing F'.
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(i) Now Kh > 0, so there exists ¢ < 1 suchthatcf < Kh. If s € N,

KF(s) = Kf(s)+eKh(s)> Kf(s)+ecf(s)
af(s)+ 0+ ecf(s).

v

Then

KF(s) = (o+ce)(f+eh)(s)
o f(s) + ecf(s) + oeh(s) + ce*h(s)
< KF(s) — 6 +ecf(s) + aeh(s) + ce?h(s).

Since h is bounded above, we can take ¢ small enough so that the last line is less than or equal to
KF(s).
(i) If s ¢ N, then h(s) = 0 and

KF(s) = Kf(s)=(oc+ce)f(s)=ocf(s)+ecf(s)
< Kf(s)+eKh(s) = KF(s)

using that ¢cf < Kh.
O

Step-3: We next show that any other eigenvalue that has absolute value o is in fact equal to o. Let
G be any eigen function corresponding to A with |A\| = 0. Fix x € Q. As before, we may assume
AG(z) > 0. As before, write G = u + v and then A\G(z) = Ku(x). We have u < |G| = f. Suppose
u < f at some point y € Q. Then u < f and v < f at one point means that we have Ku < K f at
every point, and so

(Alf(z) = [AG(z)| = AG(2) = Ku(z) < Kf(x).
So, of(x) < K f(x). But we showed of = K f. Therefore u is identically equal to f. This implies

that G is real and positive, and then it follows that ) is real and positive. Since G = o 'KG, G is
strictly positive.

Step-4: Finally, we show ¢ has multiplicity 1. If not, there exists distinct real eigen functions f1, fo.
But some linear combination H of f, fo will be real, take the value 0, but not be identically zero. As
before | H| will be an eigen function that is non-negative, and must also take the value 0. Moreover, the
corresponding eigenvalue is 0. But then 0 < K|H| = o|H|, a contradiction to |H | taking the value 0.

O]

Exercise 8.0.17. 1. Show that if 7" is a compact operator on a Hilbert space H, then its adjoint is again
compact.

2. Suppose that ' € K(H). Let (ey,)72, be an orthonormal basis of H and P, a projection onto linear
span of {ej, ea, - , ey, }. Prove that ||P,T — T'|| — 0 as n — oo.

3. Show that for a positive compact operator 1" on a Hilbert space H there is a positive compact operator
S such that $% = T.
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Unit 9

Course Structure

» Strongly continuous semigroup: Strongly continuous semigroup of operator and contraction, infinitesi-
mal generator

9.0.1 Semigroup

A semigroup is a set .S coupled with a binary operator x(x : S x S — S) which is associative. That is, for all
x,y,z €S, (x*y)*2z = x* (y* z). Associativity can also be realized as F(F'(x,y), z) = F(z, F(y, 2)),
where F'(x,y) serves as the mapping S x S to S.

A semigroup, unlike a group, need not have an identity element e such that x x e = x,Vx € S. Further,
a semigroup need not have an inverse. Therefore, many problems which can be solved with semigroups can
only be solved in the forward direction.

Example 9.0.1. Some of the simplest examples of semigroups are:

25 =R + = addition

S = Mayo(R) * = matrix multiplication

where Ma,o(R) = the set of 2 x 2 matrices with real entries.

9.0.2 Strongly Continuous Semigroups

Let X be a Banach space over the complex numbers, 7'(t) = T} linear bounded operators for ¢ > 0. T is a
semigroup if T34 s = 1315, T = 1.
These come up in the study material and in probability. For example, if one wants to solve the equation,

ou 0%u
a(t,f) = @(t,x), u(0,z) = f(x)

where f is a given function(i.e., the heat equation on R), the solution is given by u(¢, z) = T} f (z) for a certain
semigroup 71;.

If X, is a Markov process, then 7} f(x) = E* f(X;) will be a semigroup, where E* means expectation
starting at x.
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Here is an example: If X is a Hilbert space and {¢,, } is an orthonormal basis and \; a sequence of real
numbers increasing to infinity, let
oo
Z f, b5)

Another example is to let
T, f (z / fy ft e~ (@=v)*/2t g, 9.0.1)

where X is the set of continuous functions on R vanishing at infinity.
A third example is given by the next proposition.

Proposition 9.0.2. Let A : X — X be bounded. Then T} = e!“(defined as !4 = 3 t”%) is a semigroup
that is continuous in the norm topology. '
Proof. This follows easily from the functional calculus for operators. 0
We say T is strongly continuous at t = 0 if || Tyx — x| — Oast — O forall z € X.
Proposition 9.0.3. Suppose T; is strongly continuous semigroup at 0.
(1) There exists b and K such that ||T;|| < be’s*.
(2) Tz is strongly continuous in ¢ for all x € X.

Proof. (1) We claim ||T;|| is bounded near 0. If not, there exists ¢; — 0 such that ||| — co. By the
uniform boundedness principle, T}, 2 cannot converge to x for all z, a contradiction to strong continuity.
So there exists a, b such that || T3, || < bfort < a.

Write ¢t = na + r, Ty = T}'T;, so

1
Tl < ITa I T3] < b < be with K =~ log,

(2) Tix — Tsx = Ty[Ty—sx — x], s0

[Tz — Tox|| < | T6ll|T;—sz — 2| = 0.
O

Suppose D isdensein X and A : D — X isclosed. z € p(A), the resolvent set, if z— A maps D = D(A)
one-to-one onto X. Thus p(A) = o(A)¢. Write R(2) = R, = (21 — A)~!
Since A is closed, then R, is closed. To see this, suppose x,, — = and y,, = R,x,, — y. Then

Ayn = zyn — (2 — A)yp = 2yn — T, — 2y — .

Since A is closed, y € D(A) and Ay = zy — x,or (z — A)y = x. So y = R,x, which proves R, is closed.

R, is defined on all of X, so by the Closed graph theorem, 7, is a bounded operator.

Let T be strongly continuous one parameter semigroup. The infinite generator A is defined by

Tz —
Az = lim "%
h—0 h

where we mean that the difference of the two sides goes to 0 in norm. The domain of A consists of those x
for which the strong limit exists.
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As an example, with T} defined by 9.0.1, if f € C? vanishes at infinity, then using Taylor’s theorem,

Tnf(x) — f(x)

7
— 3 [UwI - 1@l ey @) [0 ey
1 " _ 9 1 _(ng)Q 1 _(y;;f)z
—|-2f (a:)/(y x) \/ﬂe dy—i—/E(h)\/ﬂe dy
. L., E(h) 1.,
= Ef (x)JrT%if (z).

where E(h) is a remainder term that goes to 0 faster than h; we used standard facts about the Gaussian
density. One can improve the above to show that the convergence is uniform, and we can then conclude that

C? C D(A)and Af = %f”.
Proposition 9.0.4. (1) A commutes with 7} in the sense that if x € D(A), then Tyx € D(A) and AT,z =
T Ax.
(2) D(A) is densein X.
(3) D(A™) is dense.
(4) Ais closed.
(5) If || T3|] < beX? and Rez > K, then z € p(A). The resolvent of A is the Laplace transform of 7.

Proof. (1)
Tiyn — Ty Ty — 1 Ty — 1
_— = T =
R
If x € D(A), the middle term converges to T3 Az. So the limit exists in the third term, and therefore
Tix € D(A). Moreover

TtZL'.

d
ﬁTtx =TiAx = ATx.

(2) We claim,
t
Tix —x = A/ Tsxds.
0

To see this, Tsx is a continuous function of s. Using Riemann sum approximation,

T, -1 [t 1 [t
h /Tsazds = /[Ts+hx—Tsx]ds
h 0 h 0
1 t+h 1 h
= / Tsxds—/ Tsxds
h Ji h Jo
— Ttl'—.’,lj'.

t 1 t
So, / Tsxds € D(A). But t/ Tsxds — x.
0 0

(3) Let ¢ be C*° and supported in (0, 1). Let

1
$¢:/0 o(s)Tsxds.
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Then,
1
Azy = /¢(S)ATSCEd8
0
1
0
= /()¢(S)a9T5de

= —/1 &' (s)Tszds
0

using integration by parts. Repeating, x4 € D(A"). Now take ¢; approximating the identity.
t
@ Tix —x= / Ty Axds: To see this, both are 0 at 0. The derivative on the left is T; Az, which is the same

0
as the derivative on the right. Let z,, € D(A), x,, — x, Ax,, — y. Then

t t
Tir, — xp —/ TsAx,ds —>/ Tsyds.
0 0
The left hand term converges to Tyx — x. Divide by ¢ and let ¢ — 0. The right hand side converges to y.
Therefore, x € D(A) and Az = y.
(5) Let
o0
L(z)x = / eysTsxds.
0

The Riemann integral converges when Rez > K.

L@l < [ bl s
0
b
RBZ_KH:E”

We claim L(z) = R,. Check that e~ *!T; is also a semigroup with infinitesimal generator A — z1.
Hence,

t
e Ty —x = (A —zI) / e **Tsxds.
0

As t — oo, the left hand side tends to —x and the right hand side tends to (A — zI)L(z)x. Since A is closed,
x = (21 — A)L(z)x. So L(z) is the right inverse of (2 — A). Similarly, we see that it is also the left
inverse. O

9.0.3 Generation of semigroups

Proposition 9.0.5. A strongly continuous semigroup of operators is uniquely defined by its infinitesimal
generator.

Proof. If S, T have the same generator, let z € D(A) and

d
£StTS_tCL’ = S(t)ATS_tx - StATS_ta: = 0.
Therefore,
°d
0= / — S, Ts_,xdr = SsToxr — SoTsx,
0 dr
or, Ssx = Tsx. Now use the fact that D(A) is dense.
T, is a contradiction if || 7| < 1 for all . O
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Proposition 9.0.6. The infinitesimal semigroup of a strongly continuous semigroup of contractions has (0, co) C
p(A) and

_ 1
IRl = IO = A7 < 5.
Proof. We already did this: this is the case b = 1, k = 0. We have
()l < Iz
zZ)T —— |T]|-
~ |Rez — K

Proposition 9.0.7. Suppose B is an extension of A and there exists A € p(A) N p(B). Then A = B.

Proof. Suppose © € D(B) \ D(A). We know (A — B)z € X, so (A — A)"Y(A = B)x € D(A) C D(B).
Then,

A=B)A—A)'A=Bz = A=A\ -A)'\-B)z
= (A—B)x.

Operating both sides with (A — B)~! to obtain (A — A)~}(A — B)z = x. So, z € D(A), a contradiction. []
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Unit 10

Course Structure

* Hille-Yosida theorem, Lumer-Phillips lemma, Trotter’s theorem, Stone’s theorem.

10.1 Hille-Yosida Theorem

Theorem 10.1.1. Let A be a densely defined unbounded operator such that (0,00) C p(A) and |Ry|| =
1
N —A)~! < N
Then A is the infinitesimal generator of a strongly continuous semigroup of contractions.

Note that saying (0, 00) C p(A) implies that A\ — A is one-to-one and onto from the domain of A to the
Banach space, which means the range of A — A is all of the Banach space.

Proof. Note that nR,, — I = R, A since R,(nl — A) = I. Let A,, = nAR,. Then A,, = n’R,, — nl, so A,
is a bounded operator. Define T}, (t) = et4n.

Step-1. We show nR,x — x for all z.

To prove this,

1
InRoz — a|| = | RnA(2)|] < —[|Az]],

so the claim is true for x € D(A). Since ||nR,|| < 1 and D(A) is dense in X, this proves the claim.
Step-2. We show that if x € D(A), then A, (z) — A(z)

An,x =nAR,x = nR,Ax — Ax.

Step-3. We show that T, (s)x converges for all z. We have

24\m
An — 2R, — § : (n t)
Tn(t) et e nten Rnt e nt — (Rn)m7

s0 || T, (t)]] < e™e™ = 1.
A,, and A,,, commute with T}, and T,,,.

%Tn(s YT () = Ta(s — )T (1) [ Ay — Az
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The norm of the right hand side is bounded by || A,z — A, z||. So
T (s)x — Tn(s)z|| < s||Apz — Apz|| — 0

as n, m — oo. Therefore T},(s)x converges, say to Tsx, uniformly in s. D(A) is dense. So this holds for all
xZ.

T, (s) is strongly continuous semigroup of contraction, so the same holds for 7.

Step-4. It remains to show that A is the infinitesimal generator of 7. We have

t
T,(t)r —x = / T(s)Apzds.
0
If v € D(A), we can let n — oo to get
t
Tix —x = / T Axds.
0

If B is the generator of T, dividing by ¢ and letting ¢ — 0, we get D(A) C D(B) and B = A on D(A). So
B is an extension of A. If A > 0, then A € p(A), p(B), which implies B cannot be a proper extension by the
preceding proposition. 0

Alternate Proof

Theorem 10.1.2. A densely defined operator A in a Banach space X is the infinitesimal generator of a
semigroup {Q(t)} if and only if there are constants ¢, r so that

|ALI =A™ <eA—r)™™ (10.1.1)
for all A > r and all positive integers m.
Proof. If A isrelated to {Q(t)}, we have
(AL —A)~' = R(),

for A > r, where

[e.e]
R\)zx = / e MQ(t)xdt (10.1.2)
0
is the Laplace transform of Q(¢)z. Hence R(\)%x is the transform of the convolution
t
/ Q(t — s)Q(s)xds = tQ(t)x. (10.1.3)
0
Continuing in this way, we find that (10.1.3) implies
1 % o1t
RN)"x = ——— " e t)xdt
e = gy | e QU
form =1,2,3,.... Therefore, with c and r, we get

m C o m—1_ —(\—r
IROV™| < (m—1)'/0 g1 ==t gy

= c(A=—r)™ (10.1.4)
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This proves the necessity of (10.1.1).
For the converse, set S(€) = (I — €A)™L, so that (10.1.1) becomes

1S(e)"| <c(l—er)™ [0<e<e,m=1,2,3...] (10.1.5)
and the relations
(I —eA)S(e)x =z = S(e)(I —eA)x (10.1.6)
holds, the first for all z € X, the second for all x € Z(A).
Ifx € 2(A), thenz — S(e)x = —eS(€)x, so that

lim S(e)x = x. (10.1.7)
e—0
But since ||S(€)|| < (1 — 7)1,
e X.
Next we set,

S(e) : 0 < e < €p} is equicontinuous, and hence (10.1.7) holds for all

T(t,e) = exp (tAS(e)) (10.1.8)

and claim that

t
IT(t, )| gcexp{l I } 0<e<eot>0)] (10.1.9)
— €r
Indeed, the relation eAS(e) = S(e) — 1 shows that,
t > "
T(te)=e <> S (10.1.10)
m=0

Now, (10.1.9) follows from (10.1.5) and (10.1.10).
For x € Z(A), (10.1.6) and (10.1.8) shows that

%{T(t, OT(t,0) 'z} = T(t,)T(t,5) " (S(e) — S(5))Ax.

If we integrate this and apply 7'(¢, ) to the result, we obtain
t
T(t,e)x —T(t,0)xr = / T(u,€e)T(t —u,d)(S(t) — S(9))Azdu. (10.1.11)
0

If we use (10.1.7) with Ax in place of z, and refer to (10.1.9), we see that the right side of (10.1.11) converge
to 0 when € — 0 and 6 — 0. The limit

Qt)xr = 11_15(1) T(t,e)x (10.1.12)
exists therefore for every z € Z(A), uniformly on every bounded subset of [0, co). Moreover, (10.1.9) shows
that ||Q(t)]| < ce™.

By equicontinuity, and the assumption that Z(A) is dense, we see now that (10.1.12) holds for all x € X.
Since T'(¢, €) is defined by (10.1.8), it follows that {Q(¢)} is a semigroup.

Let A be the infinitesimal generator of {Q(¢)}. Then,

M —A) e = /OO e MQ(t)zdt (A > 7). (10.1.13)
0
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On the other hand, AS(e) is the infinitesimal generator of {exp(tAS(e))} = {T'(¢,¢)}. Thus
(M — AS(e)) "z = / e MD(t, )adt. (10.1.14)
0

By (10.1.12) this becomes
(M —A) e = / e MQ(t)xdL. (10.1.15)
0

Comparison of (10.1.13) and (10.1.15) sl30ws now that A\I — A and A — A have the same inverse for all
sufficiently large A, and this implies that A = A. O

10.2 Lumer-Phillips Lemma
1
Lemma 10.2.1. Let A be densely defined in a Hilbert space B and suppose (0,00) C p(A). Then || Ry || < X

if and only if Re(z, Az) < 0,Vx € D(A). If the last property holds, we say A is dissipative. An example is
the Laplacian:

(f, Af) = /f VAS(x /|vf )?dz <0

using integration by parts. Another example is if Af(z) = Z Gax (a”()ai()> (z).
i J

i,7=1

To verify this, we again use integration by parts.

Proof. Suppose,
[T =AYl < S lul®
Letx = (M — A)~!u. So,
(x,z) < %()\x — Az, \x — Ax).
This becomes
2Re(x, Az) = (z,Ax)+ (Ax,x)
< s

This is true for all A\. So let A — oo. For the converse,

(x, Ax) + (Az, x)

2Re(x, Ax)
0

1
SlAz?

IA

IN

for all A > 0. O]
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10.3 Trotter’s Theorem

Theorem 10.3.1. Suppose A is the infinitesimal generator of a semigroup of contractions in a Hilbert space.
Let B be a densely defined dissipative operator such that D(A) C D(B) and there exists b > O and a € (0,1)
such that

|Bz[| < af|Az|| + bl|z|[, = € D(A).

Then A + B(defined on D(A)) is the generator of a contraction semigroup.
Proof. First, A+ B is closed: Let x,, — x and y,, = (A + B)x, — y. So,
A(xp — Tm) = Yn — Ym — B(xn — Tm),
and
[A@n —zm)ll < lyn — ymll + allA(zn — 2l + bll2n — 2.

Since, a < 1, then Ax,, converges. Therefore, Bx,, converges. A is closed, so Ax,, — Ax. If x € D(A) C
D(B),
|Bz,, — Bz|| < a||Apx — Azx|| + b||x, — x| — 0.

Then, (A + B)z, — (A+ B)z.
Next, A € p(A + B): By the Lumer-Phillips lemma, A is dissipative. B is also. So, A + B is dissipative.
By Lumer-Phillips lemma,

1
Izl < SHAL = (A + B)az].

One immediate consequence of this is that the operator A\ — (A + B) is one-to-one. Another is that the range
of A — (A + B) is closed, because if ¥, is in the range and y,, — v, then y,, = (A — (A + B))x,, for some x,.
The inequality shows that ||z, — .|| — 0. If 2, — x, then y = (A — (A + B))z, since A + B is a closed
operator. Therefore the range of (A + B) — A1 is closed.

The range is X: If not, Jv # 0 perpendicular to the range. A — AI is invertible, so 3= € D(A) such that
(A — X))z = v. Then v + Bz is in the range, or (v + Bx,v) = 0. So, ||v||?> + (Bz,v) = 0, or

lol|* < [[B]l][v]

and so ||v|| < ||Bx||. Then,
[Az = Azl < [|Bz|| < al|Az|| + bl||.

Squaring and using the fact that A is dissipative,
| Az ]2 + X?|l||? < a?|| A||® + 2ab]| Az||[|«]| + b*||]].

This holds for all A > 0, so for A large enough, ||z|| = 0. So, 2 = 0 and the range is the whole space.
Now use the Hille-Yosida theorem. O

10.4 Stone’s Theorem

Theorem 10.4.1. (1) Suppose A is self-adjoint and H is a Hilbert space. There exists a strongly continuous
semigroup U(¢) of unitary operators with infinitesimal generator A.

(2) Given a strongly continuous group of unitary operators, the generator is of the form ¢4 where A is
self-adjoint.
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Proof. (1) We know that the spectrum of an unbounded self-adjoint operator is real that ||(z — A)7!| <

1
——. Soif A > 0and z = —i A, then
[Imz|

mz

I(A =i A4)~H| iz —iA)7!|
= [Iz=4)~
_ 1

1

X.
The resolvent set of iA contains the positive reals. So iA and —iA satisfy the Hille-Yosida theorem.
Let U(t), V(t) be the respective semigroups.

IN

V and U are inverses:
d

ZUMV(H) = UDIAV()z = UiAV ()
= 0.

So, U(t)V (t)z is independent of t. When t = 0, we get z. So U(t)V (t)x = z if z € D(A). But D(A)
is dense.

Both U and V' are contractions. Since U (¢)V (t) = I, they must be norm preserving. This is because,

[zl = IV @)z]| < [V(©)z] < [|l=]

so, ||z|| = ||V (¢)z|| and similarly with U. Since they are invertible. Define U (t) = V (—t) for t < 0.

(2) Let V(t) = U(—t). Then U(t) and V (¢) are strongly continuous semigroups of contractions, and the
infinitesimal generators are additive inverse. So the generators are B, —B.

Since both B, —B are infinitesimal generators, all real numbers except 0 are in the resolvent set of B.
Take z € D(B).
IU@®)z|* = (U t)z,U(t)z) = |||

Take the derivative with respect to ¢:
(Bz,z) + (z,Bzx) = 0.

Letting A = —iB so that B = iA, we see that (Az,x) = (x, Az), Vo € D(A). Using (Az,z) =
(x, Az) with respect to x replaced by = + y and with z replaced by y, we obtain

(Az,y) + (Ay, z) = (z, Ay) + (y, Az). (10.4.1)
Replacing y by iy in above (10.4.1)
—i{Az,y) +i(Ay, ) = —i(z, Ay) + i(y, Az).

Dividing this by ¢ and subtracting from (10.4.1), we have (Az,y) = (x, Ay).

Therefore, A is symmetric and A* is an extension of A. It follows that B* is an extension of —B. The
adjoint of (A — B)~!is (A — B*)~!, and it follows that p(B*) = p(B). If z # 0 and z € R, then
z € p(B). So z € p(B*). Also, z € p(—B). Again, B* cannot be a proper extension of —B, hence
B* = —B,and so A* = A, or A is self-adjoint.

O
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Exercise 10.4.2. 1. If f € H? and f(2) = Y ¢,2", we define

oo

[RQEfI(z) =) (n+1)"ep2" (0t < o00).

n=0

Show that each Q(t) is self-adjoint and positive. Find the infinitesimal generator A of the semigroup
{Q(t)}. Is A self-adjoint?

2. Define Q(t) € B(L?), where L? = L*(R), by (Q(t)f)(s) = f(s + ).
(a) Prove that each (%) is unitary.

(b) Prove that A is the infinitesimal generator of {Q(¢)} and f € Z(A) if and only if / lyf(y)|*dy

< 0o (where f is the Fourier transform of f) and that Af = f forall f € Z(A).
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Unit 11

Course Structure

e Measures: Class of Sets, Measures, The extension theorems

11.1 Introduction

One of the most fundamental concepts in Euclidean geometry is that of the measure m(E) of a solid body
F in one or more dimensions. In one, two, and three dimensions, we refer to this measure as the length,
area, or volume of E respectively. In the classical approach to geometry, the measure of a body was often
computed by partitioning that body into finitely many components, moving around each component by a rigid
motion (e.g. a translation or rotation), and then reassembling those components to form a simpler body which
presumably has the same area. One could also obtain lower and upper bounds on the measure of a body by
computing the measure of some inscribed or circumscribed body; this ancient idea goes all the way back to the
work of Archimedes at least. Such arguments can be justified by an appeal to geometric intuition, or simply
by postulating the existence of a measure m(FE) that can be assigned to all solid bodies F, and which obeys
a collection of geometrically reasonable axioms. One can also justify the concept of measure on “physical”
or “reductionistic” grounds, viewing the measure of a macroscopic body as the sum of the measures of its
microscopic components. You are already aware of the idea of outer measure of sets in R, which used exactly
that. In this unit,

Objectives

After completing this unit, you will be able to:
* define various class of sets and look into some of their examples
* learn about the idea of measure and outer measure functions
* learn different properties of measure

¢ have some basic idea of extension of measure functions across different class of sets
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11.2 Class of sets

Let 2 be a nonempty set and P(2) = {A : A C Q} be the power set of €2, i.e., the class of all subsets of ().
Definition 11.2.1. A class C C P((2) is called a semialgebra if
1. ABeC=ANDBeC,

2. for any A € C, there exist sets B, B, ..., By, € C, for some 1 < k < oo, such that B; N B; = @ for
k
i#jand A°=| | Bi.
i=1

Example 11.2.2. 1. Q =R,C = {(a,b],(b,00) : —o0 < a,b < o0}.

2. Q=R,C={I: Iisaninterval}.

3.Q=RF,C={I1 x L x ... I : Ijisanintervalin R for 1 < j < k}.
Definition 11.2.3. A collection of sets 7 C P(2) is called an algebra if

1. Qe F,

2. A € Fimplies A° € F, and

3. A, B € Fimplies AU B € F (i.e., closure under pairwise unions).

Thus, an algebra is a class of sets containing € that is closed under complementation and pairwise (and
hence finite) unions. It is easy to see that one can equivalently define an algebra by requiring that properties
(a), (b) hold and that the property (¢)’ A, B € F = ANB € F holds (i.e. closure under finite intersections).

Definition 11.2.4. A class F C P(€2) is called a o-algebra if it is an algebra and if it satisfies
A, e F for n>1= UAne]:.

n>1

Thus, a o-algebra is a class of subsets of €) that contains {2} and is closed under complementation and
countable unions. As pointed out in the introductory chapter, a o-algebra can be alternatively defined as an
algebra that is closed under monotone unions as the following shows.

Theorem 11.2.5. Let 7 C P(2). Then F is a o-algebra if and only if F is an algebra and satisfies

A, € F A, C Apyq  foralln = UAnEf.

n>1

Proof. The ’only if* part is obvious. For the ’if” part, let {B,} -, C F. Then, since F is an algebra,
A, = U?:1 B; € F for all n. Further, A,, C A4 for all n and Un21 B, = Un21 A,,. Since by hypothesis
U, 4n € F,U, Bn € F. O

Here are some examples of algebras and o-algebras.
Example 11.2.6. Let Q = {a, b, ¢, d}. Consider the classes
Fi= {97@7 {CL}}

and
]:2 = {97 (Z)a {CL}, {b7 ) d}}
Then, F is an algebra (and also a o-algebra), but F is not an algebra, since {a}¢ ¢ F7.
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Example 11.2.7. Let ) be any nonempty set and let
F3=P(Q)={A: ACQ}, the power set of

and
Fi= {Q7 (Z)}

Then, it is easy to check that both /3 and F; are o-algebras. The latter o-algebra is often called the trivial
o-algebra on (2.

From the definition it is clear that any o-algebra is also an algebra and thus F», F3, F4 are examples of
algebras, too. The following is an example of an algebra that is not a o-algebra.

Example 11.2.8. Let 2 be a nonempty set, and let | A| denote the number of elements of a set A C 2. Define.
Fs ={A C Q : either | A| is finite or | A°| is finite }.

Then, note that (i) Q € F5 (since |Q°] = |¢| = 0)), (ii)) A € F5 implies A° € Fp (if |A] < oo, then
[(A9)°] = |A| < oo and if |A°| < oo, then A® € Fj trivially). Next, suppose that A, B € Fp. If either
|A| < oo or |B| < oo, then

|AN B| <min{|A],|B|} < oo

so that AN B € F5. On the other hand, if both |A¢| < oo and |B¢| < oo, then
(AN B)| =|A°U B°| < |A°| 4+ |B| < o0

implying that AN B € F5. Thus, property (c) holds, and F5 is an algebra. However, if |2| = oo, then F5 is not
a o-algebra. To see this, suppose that 2| = oo and {w1,ws, ...} C €. Then, by definition, A; = {w1} € F5
foralli > 1,but A = ;2| Agi—1 = {wi,ws, ...} ¢ Fs,since |A| = |A°| = oco.

Example 11.2.9. Let €2 be a nonempty set and let
Fe ={A C Q: Ais countable or A° is countable } .
Then, it is easy to show that Fg is a o-algebra.

Definition 11.2.10. If A is a class of subsets of (2, then the o-algebra generated by A, denoted by o(A), is
defined as
oAM= (] F

FEI(A)

where Z(A) = {F : A C F and F is a o-algebra on Q} is the collection of all o-algebras consisting the class
A.

Note that since the power set P(£2) contains A and is itself a o-algebra, the collection Z(.A) is not empty
and hence, the intersection in the above definition is well defined.

Example 11.2.11. In the setup of Example 11.2.7, o (Fi) = Fa (why?).

A particularly useful class of o-algebras are those generated by open sets of a topological space. These are
called Borel o-algebras. A topological space is a pair (S, 7) where S is a nonempty set and 7 is a collection
of subsets of S such that (i) S € 7, (ii)) 01,02 € T = 01N Oz € T, and (iii) {0y :a €1} C T =
Uaer Oa € T. Elements of T are called open sets.

A metric space is a pair (S, d) where S is a nonempty set and d is a function from S x S to R*satisfying
(i) d(z,y) = d(y,z) for all z,y in S, (ii) d(z,y) = 0 iff z = y, and (iii) d(z, 2) < d(z,y) + d(y, z) for all
x,y, z in S. Property (iii) is called the triangle inequality. The function d is called a metric on S (ef. see A.4).

Any Euclidean space R"(1 < n < o0) is a metric space under any one of the following metrics:
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1. For1 <p < o0o,dp(z,y) = (Z?zl |z; — yh|p)1/p~
2. deo(z,y) = maxi<i<n |z — yl.

3. For 0 < p < 1,dp(z,y) = (O 11 |z1 — y4|”). A metric space (S, d) is a topological space where s set
O is open if for all z € O, there is an € > 0 such that B(x,€) = {y : d(y,z) < €} C O.

Definition 11.2.12. The Borel o-algebra on a topological space S (in particular, on a metric space or an
Euclidean space) is defined as the o-algebra generated by the collection of open sets in S.

Example 11.2.13. Let 5 (Rk) denote the Borel o-algebra on R*, 1 < k < co. Then,
B (Rk> =0 <{A : A is an open subset of R’“}>

is also generated by each of the following classes of sets

{(a1,b X (ag, b)) —oo < a; <b; <o0,1 <i<k}
:{( ooxl) coo X (oo, xp) t Xy, ..., € RY
={(a1,b1) X ... x (ag,b) : a;,b; € Q,a; < b, 1 <i <k}
:{( oo:vl) .x(—oo,wk)::vl,...,xkeQ}

where Q denotes the set of all rational numbers. To show this, note that o (O;) C B (Rk) fori =1,2,3,4,
and hence, it is enough to show that o (O;) D B (Rk) Let G be a o-algebra containing Q3. Observe that
given any open set A C R, there exist a sequence of sets {Bn},>; in O3 such that A = J,,. | B, (Problem
1.9). Since G is a ¢ algebra snd B,, € G foralln > 1, A € G. Thus, G is a o-algebra consisting all open
subsets of R*, and hence B (Rk) Hence, it follows that

B(Rk> S0 (01) D0 (05)= QDB(Rk>
9:GO3
Next note that any interval (a,b) C R can be expressed in terms of half-spaces of the form (—oo,z), z € R

) @i = [ (-t 1]

n=1
where for any two sets Aand B, A\ B ={z: = € A, x ¢ B}. Itis not difficult to show that this implies
0{0;) = B(R¥) fori = 2, 4.

Let us give the definitions of another two types of classes.

Definition 11.2.14. A class C of subsets of {2 is a w-system or w-class if A, B € C = ANB €C. AndC is
called a A-system or a A-class if

1. Qe
2. A, BeCwithACB=B\AeC,

3. A, eCwith A, C Ay foralln > 1= UAnEC.

n>1
It is easy to note that every o-algebra is a A-system, but an algebra need not be so.

Theorem 11.2.15. If C is a w-system, then A(C) = o (C).
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Exercise 11.2.16. Let €2 be a nonempty set and P(2) = {A : A C Q} be the power set of Q2. Let A C P(Q).
Show that the smallest smallest algebra containing a semialgebra C is

k
AlC)={A: A=|JB;, BieC, fori=1,....k, k< oo},
i=1

i.e., the class of finite unions of sets from C.

11.3 Measures

A set function is an extended real valued function defined on a class of subsets of a set 2. Measures are
nonnegative set functions that, intuitively speaking, measure the content of a subset of 2. However, a measure
has to satisfy certain natural requirements, such as the measure of the union of a countable collection of
disjoint sets is the sum of the measures of the individual sets, etc. Formally, one can define measure as the
following.

Definition 11.3.1. Let 2 be a nonempty set and F be an algebra on 2. Then, a set function x4 on F is called
a measure if

1. u(A) € [0,00] forall A € F;
2. 1(0) =0;

3. for any disjoint collection of sets Ay, A, ..., € F with {5, 4n € F,

2 U A | = Z 2 (An) :
n—1

n>1

The above conditions on p are equivalent to finite additivity and monotone continuity from below.

Theorem 11.3.2. Let 2 be a nonempty set and F be an algebra of subsets of ) and u be a set function on F
with values in [0, oo] and with x()) = 0. Then, p is a measure iff 4 satisfies

(d) (finite additivity) for all Ay, Ay € F with Ay N Ay =8, (A1 U Ag) = (A1) + 1 (Az), and

(e) (monotone continuity from below or, m.c.f.b., in short) for any collection {An}n21 of sets in F such

that A,, C A, 41 foralln > 1 and U A, € F,
n>1

K U Ap | = lim M(An)

n—00
n>1

Proof. Let p be a measure on F. Since p satisfies (c), taking As, Ay, . .. to be ) yields (d). This implies that
for Aand Bin F, A C B = u(B) = u(A) + u(B\A) > u(A), i.e., i is monotone. To establish (e), note

that if p (A,) = oo for some n = ng, then u (A,) = oo for all n > ngy and p (Un21 An) = oo and (e)
holds in this case. Hence, suppose that i (A4,,) < oo for all n > 1. Setting B,, = A,\A,—1 for n > 1 (with
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Ao = 0), by (d), u(Bn) = p(An) — p(Ap-1). Since {By},, is a disjoint collection of sets in F with

U Bn= U 4n. by ©,

n>1 n>1

1 UA” = u UB"

n>1 n>1

= Z H (Bn)
n=1

= ]\}1_1?100 Z [/«L (An) —H (Anfl)]
n=1

= i A
Ngnoou( N),

and so (e) holds in this case too.
Conversely, let 41 satisfy () = 0 and (d) and (e). Let {A,}, -, be a disjoint collection of sets in F with

n
U A, e F.LetCp, = U Aj forn > 1. Since F is an algebra, C,, € F foralln > 1. Also, C,, C C41 for
i>1 j=1
all n > 1. Hence, Un21 C, = Uj21 A;. By (e),

plUa] = wlUc
j>1 n>1
= lim p(Cy)

n—oo

= n1LIEOZM(Aj) (by (d)) (11.3.1)
j=1

[e.o]

= > u(4)).
j=1

Thus, (c) holds. ]

The definition of measure given above is valid when F is a o-algebra. However, very often one may start
with a measure on an algebra A and then extend it to a measure on the o-algebra o(A). This is why the
definition of a measure on an algebra is given here. Similarly, one may begin with defining a measure on a
class of subsets of (2 that form only a semialgebra. Let us now discuss a few relevant definitions and examples.

Definition 11.3.3. A measure p is called finite or infinite according as (£2) < oo or p(2) = co. A finite
measure with 1(€2) = 1 is called a probability measure. A measure p on a o-algebra F is called o-finite if
there exist a countable collection of sets A1, Ao, ..., € F, not necessarily disjoint, such that

@ | An =9 and (b) 1 (Ay) < oo forall n > 1.

n>1

Example 11.3.4. (The counting measure). Let {2 be a nonempty set and F3 = P(2) be the set of all subsets
of 2 (see example 11.2.7). Define
:U’(A) = ‘A|’ A€ Fs,
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where | A| denotes the number of elements in A. It is easy to check that x satisfies the requirements (a)-(c) of
a measure. This measure y is called the counting measure on ). Note that y is finite iff €2 is finite and it is
o-finite if {2 is countably infinite.

Let us now discuss a few properties of the measure.
Theorem 11.3.5. Let y be a measure on an algebra F, and let A, B, Ay,..., A € F,1 < k < co. Then,
(a)’ (Monotonicity) u(A) < u(B)if A C B;
(b)’ (Finite subadditivity) (A1 U... U Ag) < (A1) 4+ ... + p(Ag);

(¢)' (Inclusion-exclusion formula) If 1 (A;) < oo foralli = 1,. .., k, then
k
p(ALU. L UAY) = D p(A)— Y p(AinAy)
i=1 1<i<j<k

+o (DR AN N A

Proof. u(B) = n(AU(A°N B)) = pu(A) + p(B\A) > u(A), by (a) and (c) of the definition of measure.
This proves (a)’.

To prove (b)', note that if either p(A) or u(B) is finite, then (A N B) < oo, by (a)’. Hence, using the
countable additivity property (c), we have

p(AuB) = p(A)+p(B\A)
= p(A) + [u(B\A) + n(AN B)] — u(AN B)
= p(A) + u(B) — (AN B). (11.3.2)

Hence, (b)’ follows from (11.3.2) and by induction.

To prove (c)’, we note that the case k = 2 follows from (11.3.2). Next, suppose that (c)’ holds for all sets
Aq,..., A € Fwith p(4;) < coforalli =1,...,k for some k = n,n € N. To show that it holds for
k =n+ 1, we have by (11.3.2),

n+1
Iz <U Ai)
i=1
z) + 1 (Ang1) (U (AN Ayu) )

( A
= ZM(Ai) - Z pAT DA+ (D) (A0 Ay b+ p(Anga)
i=1

1<i<j<n

D o mAinAn) = D (AN AN Anpn) o (D) (AN Ag)
=1

1<i<j<n
n+1 n+1
= > wA) - D pAinA)+. o+ (D" () 4
i=1 1<i<j<n+1 j=1
Hence, by induction, the proof is done. 0
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Theorem 11.3.6. Let 1 be a measure on an algebra .

1. (Monotone continuity from above) Let {An}n>1 be a sequence of sets in F such that A,,.1 C A, for

alln > 1land A=[),5; 4, € F. Also, let 1 (Ap,) < oo for some ng € N. Then,

lim g (An) = p(A)

n—o0

2. (Countable subadditivity) If { A, },~; is a sequence of sets in F such that | J,,~, An € F, then
o o0
u (U An> <> p(An).
n=1 n=1

Proof. To prove part 1, without loss of generality (w.l.0.g.), assume that ng = 1, i.e., u (A1) < oo. Let C), =
A1\A, forn > 1, and Co, = A1\ A. Then C,, and C belong to F and C,, 1 C. By theorem 11.3.2 (e),
(i.e., by the m.c.f.b. property), 1 (Cy,) T 1 (Co) and by (d), (i.e., finite additivity), 1 (Cy,) = p (A1) — 1 (Ap)
forall 1 <n < oo, due to the fact ;1 (A1) < oco. This proves 1.

n

n
To prove 2, let D,, = U A;;,n>1.Then D, 1T D = U A;. Hence, by m.c.f.b. and finite subadditivity,
i=1 i>1

(D) = lim p(Dy) < lim >~ p(Ai) =D p(An).
] n=1

n—00
=1

11.4 Extension theorems

Definition 11.4.1. A set function 4 on a semialgebra C, taking values in [0, co] is called a measure if

L. u(0) =0;
2. for any sequence of sets {A,},>1 C C, with U A, eC,and A;NAj = 0fori # j, p U A,

n>1 n>1
= ZM(An)-
n=1

Theorem 11.4.2. Let i be a measure on a semialgebra C. Let A = A(C) be the smallest algebra generated
by C. For each A € A, set

if the set A has the representation A = U B; for some By, ..., By, € C, k < oo with B; N B; = () for i # j.

i=1
Then,

k
(i) @ is independent of the representation of A as A = U B;;
i=1
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(ii) f is finitely additive on A, ie., A, B € A, ANB =0 = u(AUB) = i(A) + fi(B); and

(iii) fis countably additive on A, i.e., if A, € Aforalln > 1,4;NA; = ( foralli # j, and U A, € A,

n>1
then
o0
o U Ap :Zﬂ(An)'

n>1 n=1

kn
Proof. Parts (i) and (ii) are easy to verify. Turning to part (iii), let each n > 1, A, = U B,j, Bnj €

j=1

k
C, {an}§21 disjoint. Since U A, € Athen there exist disjoint sets {Bi}le C C such that U A, = U B;.
n>1 n>1 i=1
Now

Bi=Bin||J4n|=JBinA4y)

n>1 n>1

kn,

n>1j=1
Since for all ¢, B; € C, B; N B,,; € C for all j,n and p is a measure on C

kn
p(Bi) =YY pn(BinBy).

n>1j=1
Thus,
k
(U] = Sum
n>1 =1
k kn
-y (Semnny
i=1n>1 \j=1
k  kn
-y (e Y umnn,
n>1 \ i=1 j=1
= Zﬁ(An)a
n>1
since
k k  kn
A, =A,N UB’ = U U(Bszn])
i=1 i=1j=1

O]

Definition 11.4.3. Given a measure y on a semialgebra C, the outer measure induced by p is the set function
w*, defined on P(€2), as

pr(A) =inf 4> p(An) s {Antnz1 € C, AC | 4n
n=1

n>1
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Thus, a given set A is covered by countable unions of sets from C and the sums of the measures on such
covers are computed and p*(A) is the greatest lower bound one can get in this way. It is not difficult to show
that on C and ‘A, this is not an overestimate. That is, 4* = p on C and on A, pu* = 7. Now, let us define
measurable sets.

Definition 11.4.4. A set A is said to be p*-measurable if
1 (B) = 1" (BN A) + (B 1 A%

forall E C Q.

Exercise 11.4.5. Show that u* satisfies the following properties.
L. p*(0) =0;
2. AC B= p*(A) < pu*(B);
3. Forany {4, }n,>1 C P(Q),
oo
e (Uan) <.
n=1

n>1

Any set function p* : P(Q) — [0, co] that satisfies the above three properties is called an outer measure on
Q.

Theorem 11.4.6. Let 1" be an outer measure on €2, i.e., it satisfies
L p*(0) =0;
2. AC B= p*(A) < u*(B);
3. Forany {A,}n,>1 C P(Q),
)
il U An | D00t (An).
n>1 n=1
Let M = M,« = {A: A is p*-measurable}. Then
(i) M is a o-algebra,
(i) p* restricted to M is a measure, and
(i) p*(A)=0=P(A) C M.

Proof. From p*-measurability, it follows that () € M and that A € M = A® € M. Next, it will be shown
that M is closed under finite unions. Let Ay, Ay € M. Then, for any £ C (),

w(E)=p"(ENA)+p* (ENA]) (since 41 € M)
=" (ENA;NAg)+u" (EN AN AS)
+p (ENATNA)+p* (ENA{NAS)  (since Ay € M).

But (A; N A2) U (A1 N AS) U (Af N Ay) = Ay U As. Since p* is subadditive, it follows that
pr(EN(A1UA)) <p" (ENATNA)+p" (ENATNAS) +p* (ENATNAy).
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Thus

i (B) = 1 (BN (AU A)) + " (BN (AU Ag)°).
The subadditivity of p* yields the opposite inequality and so, A1 U Ay € M and hence, M is an algebra. To
show that M is a g-algebra, it suffices to show that M is closed under monotone unions, i.e., A,, € M, A,, C

Apyiforalln > 1= A= U A, € M. Let By = Ay and B, = A, N A{_, for all n > 2. Then for all
n>1

n (o)
n > 1, B, € M (since M is an algebra), U Bj = A, and U Bj = A. Hence for any I/ C €,

j=1 j=1
p(E) =p* (ENAp) +p" (ENAY)
=p*(ENA,NBy) +p" (ENA,NBS) + p* (ENAS) (since B,, € M)
= ,U* (E N Bn) + M* (E N An—l) + ,U* (E N A;)
= W (ENBj)+pu" (ENA;) (by iteration)
j=1

Mz

p* (ENBj)+ p* (BN A9 (by monotonicity).

<.
Il
—_

[e.e]
Now letting n — oo, and using the subadditivity of x* and the fact that U Bj = A, one gets
j=1

ZZ (EN B;) + u* (EN A°)
=1

| V

pw(ENA)+ p* (ENA°.
This completes the proof of part (i).
To prove part (ii), let {Bn}n>1 CMand BiNB; =0 fori # j. Let A; = U B;, j € N. Then, by (i),

i=j
Aj € Mforall j € Nandso

=u" (A1NBy)+p* (A1 NBf) (since By € M)
=17 (B1) + 1" (Ag)
w* (B1) + p* (Ba) + p* (As)  (by iteration)

= w* (Bi) + u* (Ap+1)  (by iteration)

[e.9]

Now letting n — oo, one has p* (A1) > Z w* (B;). By subadditivity of p*, the opposite inequality holds
i=1
and so
e.@) oo
pw(Ar) = p* ( Bz) = u(By),
i=1 i=1

proving (ii).



As for (iii), note that by monotonicity, u*(4) = 0, B € A = u*(B) = 0 and hence, for any FE,
w*(ENB) =0. Since p*(E) > p*(E N B€), this implies

p(E) =z p*(ENB°) + p*(EN B).

The opposite inequality holds by the subadditivity of *. So B € M and hence (iii) is proved. O

Few Probable Questions

1.

Show that the measure function defined on an algebra F over non-empty set ) satisfies monotone
continuity from below.

Show that the measure p satisfies finite subadditivity.

. Define an extension of measure y on a semialgebra C to the smallest algebra generated by C. Is the

newly defined function countably additive? Justify your answer.

Let M+ be the set of all ;*-measurable sets in €). Show that it forms a o-algebra.
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Unit 12

Course Structure

» Caratheodory extension of measure, Completeness of measure, Lebesgue-Stieltjes measures

12.1 Introduction

In Mathematics, a null set is a set that is negligible in some sense. In measure theory, we again have a null set
which more or less can be similar in terms of measure. By definition, a set £ C € is a null set for a measure
pwon Qif E € M and u(E) = 0. In general, an arbitrary subset A of E need not be measurable, but if A
happens to be measurable, then monotonicity implies that u(A) = 0. A complete measure is one such that
every subset A of every null set £ is measurable. Complete measures are often more convenient to work with
than incomplete measures. Fortunately, if we have a incomplete measure in hand, there is a way to extend u
to a larger o-algebra in such a way that the extended measure is complete. This is what this unit is all about.
We shall start with the definition of complete measure and gradually move on developing the theory.

Objectives

After reading this unit, you will be able to
* define complete measure and see few of its examples

* define complete extension of measure on an incomplete measure space

12.2 Caratheodory extension of measures

Definition 12.2.1. A measure space (2, F, /), where (2 is a non-empty set, F is a o-algebra over ) and v is
a measure function on F, is called complete if for any A € F with v(A) =0 = P(A) C F.

By part (iii) of theorem 11.3.2, (2, M, 11*) is a complete measure space.

Theorem 12.2.2. (Caratheodory’s extension theorem). Let 14 be a measure on a semialgebra C and let ;1* be
the set function induced by p as defined in the previous unit. Then,

(i) p* is an outer measure,
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(i) C C M+, and
(iii) p* = ponC, where M, is as in Theorem 1.3.2.

Proof. The proof of (i) involves verifying the conditions satisfied by ©*, which is left as an exercise in the

preceding unit. To prove (ii), let A € C. Let E C Q and {A,},; C C be such that 2 C U A,,. Then, for
n>1
alli € NJA; = (AiNA)U(A;NBy)U...U(A; N By) where By, ..., By are disjoint sets in C such that
k
U B; = A°. Since p is finitely additive on C,

j=1
k
p(A) = p(ANA) + > p(4;NBj)
j=1
00 00 o~ k
= ) p(A) =) p(AnnA) + > > (A, N By)
n=1 n=1 n=1 j=1

> (BN A)+ 1 (BN A,

since {A,, N A}n21 and {A, N Bj : 1< j < k,n > 1} are both countable subcollections of C whose unions
cover E'N A and FE N A€, respectively. From the definition of p*(E'), it now follows that

1w (B) = p*(ENA) + ' (BN A°).

Now the subadditivity of ;1* completes the proof of part (ii).

To prove (iii), let A € C. Then, by definition, *(A4) < p(A). If p*(A) = oo, then u(A) = co = p*(A).
If u*(A) < oo, then by the definition of *infimum,” for any € > 0, there exists {A,},~; C C such that
Ac A and

n>1

1H(A) < 3 (An) < i (A) + e
n=1

ButA=A4AnN U A, | = U (AN A,). We note that the set function /i defined on A(C) defined in the
n>1 n>1
previous unit is a measure and it coincides with p on C. Since A, AN A,, € C for all n > 1, thus, by countable
subadditivity applied to ji, we get

p(A) = i(A) < ST AANA) < S (A = S l(An) < it (4) +e.
n=1 n=1 n=1

Since € > 0 is arbitrary, this yields, u(A) < p*(A). O

Thus, given a measure y on a semialgebra C C P(§2), there is a complete measure space (€2, M =, ;1)
such that M« D C and p* restricted to C equals . For this reason, p* is called an extension of u. The
measure space (§2, M+, i*) is called the Caratheodory extension of y. Since M« is a o— algebra and
contains C, M~ must contain o (C), the o-algebra generated by C, and thus, (2, 0(C), 1*) is also a measure
space. However, the latter may not be complete (see Section 1.4).
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12.3 Lebesgue-Stieltjes measures

Let us apply the above method to construct Lebesgue-Stieltjes measures on R and R".

12.3.1 Lebesgue-Stieltjes measures on R

Let F' : R — R be nondecreasing. For x € R, let F'(z+) = lim, |, F(y), and F'(z—) = limy, F(y). Set
F(00) = limgyo F(x) and F(—00) = limy o F'(y). Let

C={(a,b]: —c0<a<b<oo}U{(a,00): -0 <a< oo}
Define
pr((a,b]) = F(b+) — F(at),
pr((a,0)) = F(oo) — F(a+).

Then, it may be verified that (i) C is a semialgebra; (ii) ur is a measure on C. (For (ii), one needs to use the
Heine-Borel theorem. See Problems 1.22 and 1.23.)

Let (R, My, ,uj;) be the Caratheodory extension of up, i.e., the measure space constructed as in the
above two theorems.

12.4 Completeness of Measures

Theorem 12.4.1. Let (€2, F, 1) be a measure space. Let
F= {A: By C A C By forsome By, By € F satisfying u(By \ B1) = 0}.
For every A € F, set f(A) = u(By1) = p(Bs) for any pair of sets By, By € F with B; C A C Bs and
(B2 \ B1) = 0. Then
1. Fisa o-algebra and F C .7:",
2. [ is well defined,

3. (€, F, i) is a complete measure space and fi = j on F.

Proof. 1. Since A € F, there exist By, By € F with By C A C B, and (B2 \~Bl) = 0. Clearly )
BS C A° C Bfand Bf, B5 € Fand u(Bf\ BS) = u(B2 \ B1) = 0andso A € F. Next, let{A,}o2, C F
and A = U A,,. Then, for each n there exist By, B, € F with By, C A,, C Ba, and pu(Ba, \

n>1
Bin) = 0. Let B, = U Bi, and By = U Bsn,. Then Bf € A C By, Bi,By € F and

n>1 n>1

[o¢]
By \ B; C | (Ban\ Bin) and hence pu(By \ B1) < Y ju(Ban \ Bin) = 0. Thus, A € F and
n>1 n=1

hence F is a o-algebra. Clearly, F C F since for every A € F, one may take B; = By = A.

2. Let By C AC By,B] C AC B}, By,B}],B2,B, € Fand u(B2\ B1) =0 = p(B5\B}). Then
BiUB, C AC ByNBjand (ByN B})\ (B1UB!) = (BaN BY) N (BN BY) C By N BS. Thus

5 ([B2n By \ [BLU BY]) = 0.

Hence, 11 (Bz) = p(B1) + p(B2\B1) = p(B1) < p(B1UBy) = p(B2N By) < pu(B;). By
symmetry  (B3) < u(B2) and so p (B2) = pu(B3). But p(B2) = pu(B1) and p(B3) = pu(B7) and
also all four quantities agree.
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3.

It remains to show that /i is countably additive and complete on F. Let {A,},2, be adisjoint sequence
of sets from F and let A = Ups1 An- Let{Bin}, 51, {B2n},>1, B1, B2 beasin the proof of (a). Then,
the fact that {A,,},7 are disjoint implies { B1,,},_, are also disjoint. And since By = J, >, B, and

w is a measure on (2, F),
oo

u(Bi) = (Bi)

n=1

Also, by definition of By, ’s, pu (B1y,) = 1 (A,) foralln > 1, and by (i), fi(A) = p (By). Thus,

A(A) = p(By) = Z (Bin) = Zﬂ (4p)
n=1 n=1

establishing the countable additivity of ji. Next, suppose that A € F and fi(A) = 0. Then there exist
Bi1,By € Fsuchthat By C A C By and p(B2\B1) = 0. Further, by definition of fi, ;u (Bs) =
fi(A) =0.1f D C A, then ) C D C By and i (B2\0) = 0. Therefore, D € F and hence (2, F, fi) is
complete. Finally, if A € F, then take B; = By = A and so, ji(A) = u (B1) = pu(A), and thus, i = p
on F. Hence, the proof of the theorem is complete.

O

Few Probable Questions

1.

2.

State and prove the Caratheodory extension theorem.

For any measure space (€2, F, i), is it possible to define a complete extension to the measure p? If yes,
justify your answer.

. Let A € M~ and 1*(A) < oo. Show that for each € > 0, there exist By, Ba,..., B, € C, k < 00

with B; N Bj = () for 1 < # j < k, such that

k
pwlAA B | <e
j=1
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Unit 13

Course Structure

* Integrations: Measurable transformations, Induced measures, distribution functions, Integration.

13.1 Introduction

You are already aware of the notion of measurable functions in space of all Lebesgue measurable sets over R.
This can be generalised for any arbitrary measure spaces. In fact, a measurable function is a function between
the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any
measurable set is measurable. This is in direct analogy to the definition that a continuous function between
topological spaces preserves the topological structure: the preimage of any open set is open.

Objectives

After reading this unit, you will be able to
* define measurable transformations and get to know several examples of them
* define induced measure
* define integration of measurable function with respect to a measure p

e come across various convergence theorems in measure

13.2 Measurable transformations

Definition 13.2.1. Let €2 be a nonempty set and let F be a o-algebra on 2. Then the pair (€2, F) is called a
measurable space. If i is a measure on (2, F), then the triple (€2, F, p) is called a measure space.

If in addition, y is a probability measure, then (€2, F, 1) is called a probability space.

Definition 13.2.2. Let (2, F) be a measurable space. Then a function f : 2 — R is called F-measurable if
for each a € R,

fH(=00,a]) = {z: f(x) <a}eF.
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However, if (€2, F) is a probability space. Then a function X : Q — R is called a random variable, if the

event
X Y(=o0,a]) ={z: X(z) <a} € F,

for each a € R.
The following definition generalizes the above between two measurable spaces.

Definition 13.2.3. Let (2;, F;), i = 1,2 be measurable spaces. Then, a mapping 7' : 3 — o is called
measurable with respect to the o-algebras (F1, Fa) (or (Fi, F2)-measurable) if

T Y(A) € Fy, forall Ac Fp.

Example 13.2.4. Let Q = {a,b,c,d}, Fo = {Q,0,{a},{b,c,d}} and let F5 =the set of all subsets of (2.
Define the mappings 7; : Q@ — 2, i = 1,2, by

Ti(z)=a, €
and
To(z) = a, if x=ua,b
= ¢ if z=c,d.

Then T} is (F», F3)-measurable since for any A € F3, T, '(A) = Q or () according as a € Aora ¢ A. By
similar arguments, it follows that 75 is (F3, F2)-measurable. However, T% is not (F3, F3)-measurable since

Ty '({a}) = {a,b} ¢ Fo.
Theorem 13.2.5. Let (;, F;),i = 1,2, 3 be measurable spaces.

(i) Suppose that F» = o (A) for some class of subsets A of Q. If T: Q1 — Qs is such that T~1(A) € F;
forall A € A, then T is (F7, F2) measurable.

(ii) Suppose that 77 : 1 — Qg is (Fy, Fa)-measurable and T3 : Qy — 3 is (Fa, F3)-measunable. Let
T =Ty0T) : Q1 — Q3 denote the composition of 7 and T», defined by 7" (w1) = T2 (11 (w1)) , w1 €
. Then, T is (F, F3)-measurable.

Proof. (i) Define the collection of sets
F={AeFR:T ' A) e R}
Then,

@ T )=\ e F=0cF.

(b) f A€ F,then T-1(A) € 7y = (T"YA))" € F1 = T~ (A°) = (T"1(A))° € Fu, implying
A e F.

() If A1, As, ..., € F,then, T~ (A;) € F foralli > 1. Since F; is a o-algebra T~ (Un21 An) _
Un>1 T-1(A,) € Fy. Thus, Un>1 An € F. (See also Problem 2.1 on de Morgan’s laws.)

Hence, by (a), (b), (c), F is a o-algebra and by hypothesis . A C F. Hence, Fo = 0(A) C F C Fo.
Thus, F = F» and T is (Fi, Fa) — measurable.

(ii) Let A € F3. Then, T, 1(A) € Fo, since Ty is (Fo, F3)-measurable. Also, by the (F7, F2)-measurability
of Ty, T~1(A) =T ' (Ty *(A)) € Fi, showing that T is (F, F3)-measurable.
L]
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13.3 Induced measures, distribution functions

Definition 13.3.1. Let (2;, F;), ¢ = 1, 2 be measurable spaces and let 7" : ©2; — Q9 be a (F7, F2)-measurable
mapping from €25 to Q. Then, for any measure 1 on (€1, F1), the set function u7~, defined by

pT 1 (A) = pu (Tﬁl(A)) , AeF

1s a measure on Jo.

Exercise 13.3.2. Check whether /7~ satisfies all the conditions for being a measure.

Definition 13.3.3. The measure ;7 is called the measure induced by 7" (or the induced measure of 7") on
Fa.

13.4 Integration

Let (€2, F, i) be a measure space and f : 2 — R be a measurable function. We will define the integral of f
with respect to measure .

Definition 13.4.1. A function f : Q@ — R = [—00, 00 is called simple if there exist a finite set (of distinct
elements) {c1,...,cx} € Randsets Aj,..., Ay € F,k € Nsuch that f can be written as

k
f=Y cia,
i=1

where, I 4 denotes the characteristic function of the set A.

Definition 13.4.2. (The integral of a simple nonnegative function). Let f : £ — [0, 00| be a simple non-
negative function on (€2, F, 1) with the representation (3.1). The integral of f w.r.t. u, denoted by [ fdp, is

defined as i
/fdu = ZCiM(Az‘)~
i=1

It may be verified that the value of the integral above does not depend on the representation of f. That is, if
f can be expressed as f = 22':1 djIp, for some dy, ..., d; € Ri(not necessarily distinct) and for some sets

By,...,B; € F, then Zle cip (4;) = 22:1 d;p (Bj), so that the value of the integral remains unchanged
(verify). Also note that for the f above,

0< [ fu<oc
The following result is an easy consequence of the definition and the above discussion.
Theorem 13.4.3. Let f and g be two simple non-negative functions on (2, F, 1). Then
(i) (Linearity) Foraw > 0,8 >0, [(af 4+ Bg)dp = o [ fdu+ B [ gdu.
(ii) (Monotonicity) If f > g a.e. (i), i.e, p({z: z € Q, f(z) < g(x)}) =0, then [ fdu > [ gdu.
(iii) If f = g a.e. (), thatis, u({z : z € Q, f(z) # g(z)}) =0, then [ fdu = [ gdp.
Proof. Left as exercise. U
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Definition 13.4.4. (The integral of a non-negative measurable function). Let f : Q — [0, 00| be a non-
negative measurable function on (2, F, u). The integral of f with respect to p, also denoted by [ fdy, is
defined as

/fd,u = lim f,du (13.4.1)
n—oo
where { f,,} is any sequence of non-negative simple functions such that f,,(z) 1 f(x) for all x.

The sequence { f,,} is is non-decreasing, and hence the right side of the above equation is well defined, that
is, it is the same for all such approximating sequences of functions as established in the theorem below.

Theorem 13.4.5. Let {f,},>, and {g,},~, be two sequences of simple non-negative measurable functions
on (2, F, u) to [0, co]such that as n — oo, fr,(x) T f(z) and g, (z) T f(x) for all x € Q. Then

i [ o= tim [ g
Proof. Fix N € Nand 0 < p < 1. It will now be shown that
lim [ fodp > p/gNd,u. (134.2)
n— o0

Suppose that gy has the representation gy = Zle dilp,. Let D,, = {x € Q: fp(z) > pgn(x)},n > 1.
Since fy,(z) 1 f(x) forall z,D,, T D = {x: f(x) > pgn(z)}. Also since gy(z) < f(z)and 0 < p <
1, D = €. Now writing f,, = fnIp, + fnlpe, it follows from the previous theorem that

/ fndp

v

[ atn.dn=p [ axto,du

k
= p> dip(BinDy). (13.4.3)
=1

By the m.c.f.b. property, for eachi € N, u (B; N Dy,) T p (B; N Q) = p(B;) as n — oo. Since the sequence
{ i fndu}n>1 is non-decreasing, taking limits in (13.4.3), we get (13.4.2). Next, letting p 1 1 yields

lim nwz/mw

n—oo

for each N € N and hence,
i [ fudu > [ gudn
n—oo
By symmetry, we get the desired result. O

We should make a remark of an alternative definition of the integral of a non-negative measurable function
which is given as follows.

/fd,u = sup {/gd,u : g non-negative and simple, g < f} .

This definition is equivalent to (13.4.1) (verify). Also it needs to be mentioned that the properties of linearity,
monotonicity and non-negativity are valid for the integrals of non-negative measurable functions as well.
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Theorem 13.4.6. (The monotone convergence theorem or MCT). Let { fn}n21 and f be non-negative mea-
surable functions on (€2, F, 1) such that f,, T f a.e. (u). Then

[ tin= i [ fdu

Proof. Let {g,},~, be a sequence of non-negative simple functions on (€2, F, i) such that g,(x) 1 f(x)
for all z. By hypothesis, there exists a set A € F such that p (A°) = 0 and for z in A, f,,(z) T f(z).
Fixk € Nand 0 < p < 1. Let D,, = {z : =z € A, fo(z) > pgx(z)},n > 1. Then, D,, 1+ D =
{z: z €A, f(z) > pgr(x)}. Since gp(zr) < f(x) for all z, it follows that D = A. Now, by the non-
negativity of the integral of non-negative measurable functions, we get

/fndu > /ntDnd,u > p/gkIDndu foralln > 1.
By m.c.fb., [ grlp,dp?t [ gpladp = [ gpdp as n — oo, yielding

liminf/fndu > p/gkdﬂ,

n—o0

forall 0 < p < 1and all K € N. Letting p 1 1 first and then £ 1 oo, from the definition of integral of
non-negative measurable function, one gets

ﬁminf/fnduz /fdu.
n—o0
By monotonicity,
/fnd,u < /fdu foralln > 1
and the proof is done. -

Corollary 13.4.7. Let {h,},~, be a sequence of non-negative measurable functions on a measure space

(Q, F, ). Then N N
/ (Z hn> dp = Z/hndu.

n
Proof. Let f, =Y hi,n > 1,andlet f = 37°, h;. Then, 0 < f,, 1 f. By the MCT,

=1
[ it [ s

/fndu = é/hidu.

Hence, the result follows. O

But by linearity of integrals,

Corollary 13.4.8. Let f be a non-negative measurable function on a measurable space (2, F, ). For A € F,
let

v(A) = /fIAd,u.
Then, v is a measure on (€2, F).
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Proof. Let {An}n21 be a sequence of disjoint sets in F. Let h, = fl4, forn > 1. Then by the preceding
result,

/lih] dﬂzg/hnduzgmn).

O

Theorem 13.4.9. (Fatou’s lemma). Let {f,},>1 be a sequence of non-negative measurable functions on
(Q, F, u). Then

o > [ 1ims
lzrgg}f/fndu /llgr_l)lcgffndu.

Proof. Let gn(x) = inf{f;j(z) : j > n}. Then {g,}n>1 is a sequence of non-negative, non-decreasing
measurable functions on (€2, F, i) such that g, (x) 1 ¢g(z) = liminf f,,(z). By MCT,
n—oo

/ gndp T / gdp.
[ o= [ guds

for each n > 1 and hence the result follows. O

But by monotonicity,

Definition 13.4.10. (The integral of a measurable function). Let f be a real valued measurable function on a
measure space (2, F, u). Let f* = fIt>0and f~ = — fI;o. The integral of f with respect to x, denoted

by [ fdp, is defined as
[ tin= [ £rau= [ ran

provided that at least one of the integrals on the right side is finite.

It is to be noted that both f™ and f~ are non-negative measurable functions and f = f* — f~ and
|f| = f* + f~. Finally we are in a position to define integrable functions.

Definition 13.4.11. A measurable function f on a measure space (€2, F, u1) is said to be integrable with respect

to,uif/|f|d,u<oo.

Since |f| = fT + f, it follows that f is integrable if and only if both f* and f~ are integrable, that
is, /f+du < 0o and /f‘du < oo. Finally, if A C F, then the integral of f over A with respect to p is

/Afdu—/fIAdu

provided the right side is well defined. We shall conclude this unit with this definition. In the next unit, we
shall explore further properties related to integrals.

denoted by / fdu and is defined by
A
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Few Probable Questions

1. Show that the integral of non-negative measurable functions satisfies linearity.
2. State and prove Monotone Convergence theorem.
3. State and prove Fatou’s lemma.

4. Define integrable function. Let f and g be two integrable functions such that f = g a.e. (u). Can we
say whether / fdu = /gdu.
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Unit 14

Course Structure

* More on Convergence

14.1 Introduction

In the previous unit, we defined the integration of a measurable function starting with the simple functions
and developing using non-negative measurable functions. It is imperative that the definition of integral that
we defined in the previous unit satisfies the property of linearity, monotonicity, etc. and is a routine exercise.
In this unit, we shall explore further properties of integral such as the convergence theorems.

Objectives

After reading this unit, you will be able to

* discuss additional properties of integrals

* learn various definitions of convergence in measure spaces and explore their properties

14.2 Further properties related to Integration

Theorem 14.2.1. Let f be a measurable function on (€2, , 1) and let f be non-negative a.e. (x). Then

/fduzO iff f=0 ae. (p).

Proof. If f = 0 a.e. (u), then the result is trivially true (verify!). For the converse part, let D = {w : f(w) >
0}and D, = {w: f(w) > 1} ,n>1. Then D = Up>1 Dn- Since f > fIp, ae. (u),

1
Oz/fduZ/fIDnd,uzn,u(Dn):>,u(Dn):O foreach n > 1.

Also D, T D and so by m.c.f.b,,
(D) = lim p1(Dy) = 0.

n—o0

Hence, the result follows. O]
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Theorem 14.2.2. If f is integrable over a measure space (2, F, u), then | f| < oo a.e. ().
Proof. LetC,, = {z : |f(z)| >n},n>1andletC = {z: |f(z)| = oo}. Then C), | C and

[ 151> [ \fito,au= np(cn)

which implies that p(C, f |f‘ P Since /|f|du < oo, lim p(Cy,) =0. Hence, by m.c.f.a, u(C) =
n—oo

lim u(C,) =0. O]

n—oo

We are now in a position to prove the extended dominated convergence theorem.

Theorem 14.2.3. (The extended dominated convergence theorem or EDCT). Let (2, F, 1) be a measure space
and let f,,, gn, : @ — R be (F,R)-measurable functions such that | f,| < g, a.e. (1) for all n > 1. Suppose
that

(i) gn — gae. () and f, — fae. (u);
(ii) gn, g are integrable and [ |g,|du — [ |gldu as n — oo.
Then, f is integrable and

lim /fnd,u—/fd,u and lim /]fn—f]du—o.
n—oo n—oo
Proof. By Fatou’s lemma,
[ 151 < vimint [ 1l < it [ lgulde = [ gl < o

Hence, f is integrable. For proving the second part, let h,, = f,, + gn and v, = g, — fn, n > 1. Then {h,}
and {~, } are sequences of non-negative integrable functions. By Fatou’s lemma and (ii),

/(erg)d,u = /liminf hndp
n—r00

< liminf [ h,du

n—oo

= lirginf [/gndu—l-/fndu}
= /gdu-i—hnrglor.}f/fndu.

/(9— fdp < /gdu — lirrgisolip/fndu.

By the linearity of integrals we have from the above two equations,
/ fdp < liminf / fndp
n—oo
imsup [ fudu < [

n—o0

Similarly,

which yields
o / fdp.

For the last part, one should apply the above argument to f,, and g, replaced by |f — f,| and g, + |f|
respectively. 0
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Corollary 14.2.4. (Lebesgue’s dominated convergence theorem, or DCT). If |f,,| < g a.e. (p) forall n >
1, [ gdp < oo and f,, — f a.e. (1), then f is integrable and

Jm [ fudu= [ sduwand im [ 15, - fldu=0.

Corollary 14.2.5. (The bounded convergence theorem, or BCT). Let 1(€2) < oo. If there exista 0 < k < oo
such that | f,,| < ka.e. () and f,, — fa.e. (u), then

nh_)rgo/fndu:/fduand nh_}rglo/|fn—f|du20.

Proof. Take g(w) = k for all w € Q in the previous corollary. O

Exercise 14.2.6. If f is integrable, check whether | f| < oo a.e. ().

14.3 More properties related to Convergence

Let { fn}n>1 and f be measurable functions from a measure space (€2, F, u1) to [0, co]. Let us define the notion
of convergence on the measure space.

Definition 14.3.1. {f,,},>1 is said to converge pointwise to f if

lim f,(z) = f(x), Vo € Q.

n—o0

Definition 14.3.2. {f,},>1 is said to converge to f almost everywhere (u), denoted by f,, — f a.e. (u), if
there exists a set B € F such that u(B) = 0 and

lim f,(z) = f(x), Vo € B

n—oo

Let us consider some more notions of convergence.

Definition 14.3.3. {f,,},>1 is said to converge to f in measure (w.r.t. ) denoted by f,, ~» f if for each
e >0,

lim g ({|fn — f] > €}) =0.

n—0o0

Definition 14.3.4. {f,,},,>1 is said to converge to f uniformly over €2 if
lim sup{|f.(z) — f(x)|: z € Q} =0.
n—oo

Definition 14.3.5. { f,,},,>1 is said to converge to f nearly uniformly (p) if for every e > 0, there exists a set
A € F such that u(A) < e and f,, — f uniformly on A€, f,, — f uniformly , that is,

sup{|fn(z) — f(z)| : € A} =0
asn — oo.
Theorem 14.3.6. Suppose that 1(Q) < co. Then f, — f a.e. (u) implies f,, — f.
Proof. Left as an exercise. O

Theorem 14.3.7. Let f, ~ f. Then there exists a subsequence {n;} such that f,, > f a.e. (i).
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Proof. Since f, N f, for each integer k£ > 1, there exists an ny, such that for all n > ng,
M ({]fn —fl> 2"“}) <2k (14.3.1)

Without any loss of generality assume that ny, 1 > ny, for all k > 1. Let Ay, = {|f, — f| > 27*}. Then by
corollary 13.4.7,

/ (Z fAk> dp = Z/IAkdu = u(Ap),
k=1 k=1 k=1

oo
which is finite by (14.3.1). Hence, by theorem 14.2.2, Z 14, < ooa.e. (u). We observe that
k=1

D L4 (@) <00 = |far(2) = fla) <27F
k=1

for all large k£ which implies that

lim fp, (x) = f(z).

k—o0

Hence the result. O

Theorem 14.3.8. (Scheffe’s theorem). Let { f,,}, f be a collection of nonnegative measurable functions on a

measure space (2, F, ). Let f,, — fae. (w), /fnd,u — /fd,u and / fdu < co. Then

i [ 12~ fldu=0.
n—oo

Proof. Let g, = f — fn,mn > 1. Since f,, — f a.e. (u), both g, and g, converge to zero a.e. (u1). Further,
0 < g,;F < f and by hypothesis / fdu < oco. Thus, by the dominated convergence theorem, it follows that

/g:du—)().

Next, by hypothesis we note that / gndp — 0. Thus,

/gndu=/gidu—/gndu%0
/Ign!dﬂ=/g$du+/9ndu-

Theorem 14.3.9. Let f be integrable over the measure space (2, F, ). Then for every e > 0, there exists a
5> 0 such that s(A) < 6 = / fldp < e.
A

and hence

O]
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Proof. Fix anumber € > 0. By dominated convergence theorem, there exists at > 0 such that / |fldu < €/2.

{I1f1>¢}
€

Hence, for any A € F with u(A) <6 = —,

2t
/151

IN

/ Ifdu+/ |Fldy
An{|f|>t} {If]>t}

A d
tu( )+/{f|>t} | fldp

€.

IN

IN

Hence the theorem. O

Few Probable Questions
1. State and prove the extended dominated convergence theorem.
2. Define convergence in measure. If 1(€2) < oo that show that f,, — f a.e. (1) implies f, = f.

3. State and prove Scheffe’s theorem.
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Unit 15

Course Structure

* LP-Spaces, Dual spaces, Banach and Hilbert spaces

15.1 Introduction

LP spaces are the special spaces of measurable functions over a given measure space (2, F, ). Let us start
with the definition of LP space. Let 0 < p < co. Then

LP(Q, F,pu) = {f: |f|P is integrable with respect to z}

= {15 [iran< oo},

L>®(Q, F,pu)={f: p{|f| > K}) =0 forsome K € (0,00)}.

Also, we can define

For the sake of simplicity, if the underlying measure space is specified, we will only use the notation L”. We
will check upon the properties of L? spaces in details.
Objectives

After reading this unit, you will be able to
* define L? spaces and develop it into a complete metric space

* define dual space of LP

15.2 L” Spaces

Unless otherwise specified, we will take the measure space to be (2, F, ). We start with the following
theorem.

Theorem 15.2.1. Let f,g € L'. Then
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1. /(ozf—I—Bg)d,u:a/fdu+ﬁ/gd,uforanya,ﬂ e R;
2. f > gae. (u) implies /fdu > /gdu;

3. f =ga.e. (u) implies /fdu = /gdu.
The following result will show that L? is a vector space over R for general 0 < p < oo.
Theorem 15.2.2. For every 0 < p < o0,
frge LP = af +bg e LP, fora,beR.
Let us define the following for convergence in L? space.

Definition 15.2.3. Let 1 < p < oco. Then { f,,} converges to f in L, denoted by f,, L, f if/ | fulPdp < oo

forall n > 1,/|f]pd,u < oo and

lim /fn—fpduz().

n—

Clearly, the above is equivalent to || f,, — f||, — 0 as n — oo, where, for any F measurable function g and

any 1 < p < o0,
min{%,l}
ol = ( [lapan) "

For p = 1, this is also called convergence in absolute deviation and for p = 2, convergence in mean square.
Further, { f,,} converges to f in L if

lim |[fn = flleo =0,
n—oo
where for any F measurable function g on (2, F, ),

9lloc = inf{K : K € (0,00), u({lg| > K}) = 0}.

Theorem 15.2.4. Let { f,,}, f be measurable functions on a measure space (€2, F, ut). Let f, L, f for some
1 < p < oo. Then f, = f.

Proof. Foreach e > 0,let A, = {|fn — f| > €}, n > 1. Then

/|fn—f|pdﬂ2/ |fr — fIPdp > €2 p(Ay,).

n

Since f,, — fin LP, / | fr — fIPdu — 0 and hence p(A,) — 0. n

We are familiar with the idea of metric spaces and the distance function in a metric space. Let us first define
the norm function in LP.

Definition 15.2.5. Let f € LP, where 0 < p < co. Then

min{%,l}
Hﬂbz(/ﬁ%M)

[flloc = sup{k : u({|f] > k}) > 0}

which is called the essential supremum of f.

and for p = oo,
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Theorem 15.2.6. For f,g € LP,0 < p < o0, let

dP(fa 9)=|f- 9”19'

Then for any f,g,h € LP,1 < p < oo,
1' dp(f7g):dp(gaf) ZO,
2' dp(f’ h) S dp(fa g) + dp(ga h)

However, d,(f,g) = 0 implies only that f = g a.e. (1). Thus, the above theorem says that the function
d, satisfies two conditions for being a metric. Also, it will satisfy the last condition of being a metric if we
additionally define the following.

Definition 15.2.7. For f,g € LP, f is called equivalent to g and is written as f ~ g if f = g a.e. ().

It is easy to verify that the relation ‘~’ s an equivalence relation. Thus, it partitions LP into disjoint
equivalence classes such that in each class all elements are equivalent. The notion of distance between these
classes may be defined as follows:

dp([f1;19]) = dp(f, 9);

where [f] and [g] denote, respectively, the equivalence classes of functions containing f and g. It can be

verified that this is a metric on the set of equivalence classes. In what follows, the equivalence class [f] is

identified with the element f. With this identification, (L?, d),) becomes a metric space for 1 < p < oco.
However, for 0 < p < 1, if we define

dp(f,9) Z/\f—glpdu,

then (L?, d,) becomes a metric space.

15.2.1 Some Useful Results
Now let us state certain useful results that will be useful in the sequel.

Theorem 15.2.8. (Markov’s inequality). Let f be a nonnegative measurable function on a measure space
(Q, F, ). Then forany 0 < t < oo,

n({f >1}) < ff;l/{

Definition 15.2.9. A function ¢ : (a,b) — Ris called convex if forall0 < A < 1,a <z <y < b,

dAz + (1= N)y) < d(z) + (1 — N)o(y).

Geometrically, this means that for the graph of y = ¢(z) on (a,b), for each fixed ¢ € (0, 00), the chord
over the interval (x, x + t) turns in the counterclockwise direction as x increases.
More precisely, the following result holds.

Theorem 15.2.10. Let ¢ : (a,b) — R. Then ¢ is convex if and only if a < 1 < x2 < 3 < b,

P(z2) — ¢(21) < P(z3) — P(x2)

T2 — I 3 — X2 ’

which is equivalent to

P(z2) — ¢(71) < P(z3) — ¢(x1) < ¢(x3) — ¢(952‘

T2 — X1 T3 — I xr3 — T2
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Let us state the following properties of a convex function which can be deduced from the above theorem.
Theorem 15.2.11. Let ¢ : (a,b) — R be convex. Then

1. Foreach x € (a,b),

exist and are finite.
2. Further, ¢’ (-) < ¢/, (-) and both are nondecreasing on (a, b).
3. ¢'(-) exists except on the countable set of discontinuity points of ¢, and ¢ .

4. Forany a < ¢ < d < b, ¢ is Lipschitz on [c, d], that is, here exists a constant K < oo such that

[9(x) — ¢(y)| < Klz —y|
forallc <z, y <d.

5. Foranya < ¢, © < b,
¢(x) = d(c) = ¢/ (c)(z —c) and @(z) — d(c) = ¢_(c)(z — ¢).

Theorem 15.2.12. (Holder’s inequality). Let (€2, F, i) be a measure space. Let 1 < p < oo, f € LP and
g € L9, where g = Ll Then

[iralan< ([ |f\pdu)’1’ (/ quu);,

[fglly < [l fllpllgllq-

If || fg|l1 # O, then the inequality in the first equation above holds if and only if | f|P = ¢|g|? a.e. (i) for some
constant ¢ € (0, c0).

that is,

For p = 1 or ¢ = oo, we have the following.

1l = / Faldp < 11 llglloo-

If equality holds, then | f|(]|g|lcc — |g]) = 0 a.e. (1) and hence |g| = ||g||oo On the set {|f| > 0} a.e. (p).

Corollary 15.2.13. (Cauchy-Schwarz inequality). Let f, g € L?. Then

[isslan< (| rfr%m)% (/ rgPdu)é,

1Fglly < [ f1l2llgll2-

As an application of Holder’s inequality, one can get the following.

that is,
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Theorem 15.2.14. (Minkowski’s inequality). Let 1 < p < oo and f, g € LP. Then

</‘f+g|pd“>; - </|f|pdu>;+ </ |9|pdu>;

1+ glly < [1fllp + lgllp-

Now let us discuss the properties of LP spaces in details. Recall that a metric space (X, d) is complete
when every Cauchy sequence in (X, d) converges to an element in X . In what follows, we will show that LP
forms a complete metric space with respect to the metric defined.

that is,

Theorem 15.2.15. For 0 < p < oo, (LP, d,,) is complete.

Proof. Step I:Let {f,} be a Cauchy sequence in LP for 0 < p < oo. Let {¢} and {J;} be sequences of
positive numbers decreasing to zero. Since {f,,} is Cauchy, for each k£ > 1, there exists an integer nj such
that

/ | fn = fmlPdp < e, VYn,m > ny. (15.2.1)

Without any loss of generality, let us assume that ny; > ny for each £ > 1. Then by Markov’s inequality

P frnir = fril = 0k}) < 6,7 / | frr = fr [Pdp < 6, Peg. (15.2.2)

Let Ay = {|fapsr — frl =6k}, k=1,2,... and A = limsup Ay = ﬂ U Ap. If {ex} and {0y } satisfy

Fveo i=1k2]

D 6 Per < oo, (15.2.3)
k=1

o0
then by equation (15.2.2), Z p(Ag) < oo and hence p(A) = 0.
k=1

oo
Note that for x € A, |fp, ., (%) — fa,(x)| < 6 for all large k. Thus, if Zék < o0, then for z € A€,

k=1
{fn, ()} is a Cauchy sequence in R and hence, it converges to some f(x) in R. Setting f(z) =0 forz € A
one gets

lim fo, = f ae. (p).

o0
A choice of {e;} and {0y} such that Z 85 < oo and (15.2.3) holds is given by € = 2-P+D% and 5, = 2.

k=1
Step II: By Fatou’s lemma, Step I, and equation (15.2.1), for any fixed & > 1,
€k = hmlnf ‘fnk - fnk+j‘pdu > / ‘fnk - f’pd,u
]A)OO

Since f,, € LP, this shows that f € LP. Now letting k — o0, klim dp(fny. f) =0.
—00
Step III: By triangle inequality, for any fixed k£ > 1,

dp(frs ) < dp(frs fri) + dp(frps f)-
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By equation (15.2.1) and Step II, for n > ny, the right hand side of the above equation is < 2¢, where

€, 0<p<1
€ =
e,lg/p, 1 <p<oo.

Now, letting k — oo, we get, lim d,(f,, f) = 0. O
n—o0

Exercise 15.2.16. Prove that L°° is a complete space.

15.3 Dual Spaces

Letl§p<oo.LethLq(u),whereq:(pf%l)ifl<p<ooandq:ooifp:1.Let

Ty(f) = /fgdu, feL’(n). (15.3.1)
By Holder’s inequality, [ |fg|du < co and so T(-) is well defined. Clearly T, is linear, i.e.,

Ty (o fi +asfo) = anTy (f1) + 2Ty (f2) (15.3.2)
for all ay, 0 € Rand f, fo € LP(p).
Definition 15.3.1. 1. A function 7" : LP (1) — R that satisfies (15.3.2) is called a linear functional.

2. A linear functional 7" on LP () is called bounded if there is a constant ¢ € (0, co) such that

Tl <cllflly forall fe LP(u).

3. The norm of a bounded linear functional 7" on L” (1) is defined as

1T = sup{|Tf|: f € LP(), || fllp = 1}

By Holder’s inequality,
T(DI < Ngllqll fll,  forall  f e LP(n),
and hence, T} is a bounded linear functional on L (). This implies that if d,, ( f,,, f) — 0, then

Ty (fn) = To(H)] < llgllgdp (fns F) = O,
i.e., T, is continuous on the metric space (LP(p), dp).

Definition 15.3.2. The set of all continuous linear functionals on L? is called the dual space of L” and is
denoted by (LP)*.

Theorem 15.3.3. (Riesz representation theorem). Let 1 < p < co. Let T : LP — R be linear and continuous.
Then, there exists a g in L7 such that T' = T, that is,

T(f)=Ty(f) = /fgdu forall f € LP (15.3.3)

b

1forl<p<ooalndq:ooifpzl.
p—

where ¢ =

Such a representation is not valid for p = oo, that is, there exist continuous linear functionals 7" on L for

which there is no g € L! such that T(f) = /fgdu forall f € L.
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Few Probable Questions

1. Establish a metric function on L? with proper justifications.

2. Show that LP is a complete space.
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Unit 16

Course Structure

* Product of two measure spaces. Fubini’s theorem.

16.1 Introduction

In this unit, we will probe the question as to whether there is a natural way to define measure on the product
of two sets €21 and 25 which reflects the structure of the original measure space.

Objectives

After reading this unit, you will be able to
* define product of measure spaces and learn related results

* state and prove the Fubini’s theorem

16.2 Product of two measure spaces

Let us start with the following definition.

Definition 16.2.1. Let (£2;, ;) and (€9, F2) be two measurable spaces. The set A x B with A € F; and
B € F5 is called a measurable rectangle. The collection of measurable rectangles will be denoted by C. The
product o-algebra of 7 and F3 on €2y X 2o, denoted by F; x F3 is the smallest o-algebra generated by C,
ie.,

.7:1><]:2:U<{A><B: Ae F, BG‘FQ}).

(1 x Qg, F1 x JF3) is called the product measurable space.

Now, if 11 and pg are measures defined on the measurable spaces (£21, F7) and (22, F2) respectively, then
we can define the a new function y on C as follows.

(A X B) = p1(A) - p2(B)
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forall A € F1 and B € F,. One can extend it to a measure on the algebra .4 of all finite unions of disjoint
measurable rectangles simply by assigning the p-measure of a finite union of disjoint measurable rectangles
as the sum of the u-measures of the corresponding individual measurable rectangles. Then, by the extension
theorem, it can be further extended to a complete measure on a o-algebra containing F; x JF» as defined in
the above definition. However, if A € F; x JF3 is not a measurable rectangle, then we need some further
approach to evaluate y(A).

Exercise 16.2.2. Let (24, F1, 1) and (£21, F1,v) are two measure spaces. Define outer measure 7* on 2 =
01 x )y as follows

T*(E):lnf Z/,L(AJ)I/(B]) Ajefl, BjGFQjGNandEC UAjXBj R
j=1 J=1

for every 2 C (). Show that 7* as defined above is an outer measure on 2.

Definition 16.2.3. Let A € F; x Fs. Then, for any z1 € )4, the set
Aryy = {12 € Q2 (w1,22) € A} (16.2.1)

is called the x-section of A and for any x5 € Qo, the set A, = {x1 € Q1 ¢ (x1,22) € A} is called the
T9-section of A.

If f:0Q x Qo — Qzisa (F; x Fa, F3) measurable mapping from ; x (29 into some measurable space
(Q23, F3), then the x1-section of f is the function fi,, : Qo — (3, given by

frey (x2) = f(21,22), T2 € Qa. (16.2.2)
The x2-sections of f can be similarly defined.

Theorem 16.2.4. Let (21 x Qo, F; x F2) be a product space, A € F; x Fy and let f : Q1 x Qy — Q3 be a
(F1 X Fa, F3)-measurable function.

1. Forevery x; € y, A1, € F2 and for every xo € o, Aoy, € Fi.
2. Forevery x1 € Q, fiz, is (Fa, F3)-measurable and for every xo € Qo, foy, is (F1, F3)-measurable.
Proof. Let 1 € €1 be fixed. We define a function g : {29 — €21 as follows.
g(x2) = (z1,22), T2 € Qa.

Note that for any measurable rectangle A = A; x As € Fy X Fo,

Ay, ifxy € Ay
Alml = .
@, if I ¢ A1

and hence g~ '(A; x A3) € Fo. Since the class of all measurable rectangles generates F; x F», for fixed
r1 € Q, gis (Fi, F1 x Fa)-measurable. Therefore, for A € Fi x Fo, A1z, = g~ '(A) € F» and for f as
given, fi;, = f o gis (Fa, F3)-measurable. This proves 1 and 2 for z-sections. Similar proof follows for
To-sections. L]
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Next we suppose that 1 and po are measures on (€21, F1) and (€9, F3) respectively. Then for any set
A€ Fi x Fo, forall x; € Qy, A1, € F2 and hence pg( A1z, ) is well defined. If it were an F;-measurable
function, then one might have defined a set function on F; x F3 by

,U12<A) = / ,ug(Alxl,u,ldxl. (1623)
971

Similarly, reversing the order of p; and u9, we may define the set function
21 (A) = / 1251 (Agxmu,gdxg. (1624)
Qo

provided that p1; (Asgz,) is Fa-measurable. Also, it should be noted that for the measurable rectangles A =
Ay x Ag, p12(A) = p1(Ar)pe(Agz) = p21(A) and thus both pi12 and pe; coincide with the product measure
1 on the class C of all measurable rectangles. This implies that if the product measure p is unique on F; X Fa,
and p12 and pop are measures on F; X Fo, then they must be equal to p on F; X Fa. Then one can evaluate
wu(A) for any set A € F; x Fo using the equations (16.2.3) and (16.2.4).

Theorem 16.2.5. Let (1, F1, 1) and (Q2, Fa, i2) be o-finite measure spaces. Then
1. forall A € F; x Fo, the functions uo( A1z, ) and p;(As,, ) are respectively F; and Fo-measurable.

2. The functions w12 and po; as given in (16.2.3) and (16.2.4), are measures on JF; X JFo satisfying
,U,lg(A) = U1 (A) forall A € F1 x Fo.

3. Further, p19 = po1 = p is o-finite and it is the only measure satisfying

,u(Al X Ag) = /,Ll(Al),LLQ(AQ) for all Al X AQ eC.

Proof. First let us assume that p; and uo are finite measures. Also, let
S={AecFi xFo: pa(Aig) isa (Fi,B(R)) — measurable function}.

For A = Q1 x Qo, p2(Aiy,) = u2(e) for all z; € Qg and hence 7 x y € S. Next, let A, B € S with
A C B. Then we can check that

(A \ B)lxl = A1961 \ Blm'
Since pg is finite and A, B € S so
p2((A\ B)iay) = p2(Ate; \ Biay) = p2(Are,) — p2(Bie,)

is (F1, B(R))-measurable. Thus, A\ B € S. Finally, let {B,,} be a monotonically increasing sequence of
sets in S. Then, for any z1 € Q1, (Bp)12, C (Bn+1)1a, for all n > 1. Thus, by MCT,

00 > 2 U By, = W2 U (Ba)iz, | = nhm p2((Bn)ia;)

—00
n>1 n>1

forall 1 € ;. This implies that jo U B, is (F1, B(R))-measurable and hence, bigcup,>1By, € S.
n>1

Thus, S is a A-system. Now, for A = A} x Ag € C, p2(Aiz,) = pu2(A2)l4,(x1) and hence C C S. Since C

141



is a w-system, it follows that S = F; x Fa. Thus, p2(A1z,), considered as a function of x4, is (F1, B(R))-
measurable for all A € F; x Fa. This proves 1.

Next, we prove part 2. By 1, ui2 is a well-defined set function on F; x Fa. It is easy to check that
w12 is a well-defined measure on F; X Fo. Similarly, o1 is a well-defined measure on F; x Fa. Since
w12(A) = p21(A) = pi(A)pe(Az) forall A = Ay x Ay € C and C is a w-system generating F; X Fo, it
follows that p112(A) = 91 (A) for all A € F; x Fa. Thus, 2 is proved for finite 11 (€21) and p2(2).

Next let us assume that ;s are o-finite. Then there exist disjoint sets { Bj;, },>1 in F; such that U B, = Q;

n>1
and p;(Bip) < oo forall n > 1,4 = 1,2. We define finite measures

pin(D) = ui(D N Byy,), D € F;,

forn > 1, i« = 1,2. The above arguments replacing j; by p;, implies the (F7, B(R))-measurability of
ton(A1z, ) forany A € Fy x Fa, n > 1. Since pg is a measure on Fo,

Al:c1 Z N2n :L‘l

and hence, considered as a function of x1, it is (F;, B(R))-measurable for all A € F; x Fa. Thus, the set

function p15 of (16.2.3) is well-defined and o-finite as well. We can say the same for po; of (16.2.4). Now, let
uggl’n) and ,ugT’n) denote the set functions defined by (16.2.3) and (16.2.4) respectively with 1 and w2 being

replaced by p1,, and poy,, for m > 1, n > 1. By repeated use of the MCT,

p2(4) = /M2(A1x1)uld$1
Q1

o0

- Z (/ ZM2(A111 N B2n)> ,Lﬂdxl

m=1 Im n=1

= Z Z/ po(A1z; N Bop)prdzy

m=1n=1 Bl'm

- Z Z,Jm” ), AeFixF (16.2.5)

m=1n=1

and similarly,
oo oo

o (A) =3NS (4), Ae Fix (16.2.6)
n=1m=1

Since ug“n) and ugT’n)

Also, by the finite case,

are finite measures, it is easy to check that p12 and p9; are measures on F; X Fa.

P Ay x Ap) = pi™(Ay x Ay) forallm > 1, m > 1

and hence
H12(A1 X AQ) = N21(A1 X AQ) for all A1 X AQC
Next {Biy, X Bay : m > 1, n > 1} is a partition of 1 x Q9 by F; X F3 sets and by (16.2.5) and (16.2.6),
forallm >1,n > 1,
p12(Bim X Ban) = p1(Bim)p2(Ban) = po1(Bim X Bay,) < 0o.

Hence, p12 and o7 are o-finite on F; x Fa. Since p12 and po; are equal on C and C is a w-system generating
the product o-algebra, it follows that 12 = 91 on Fi X F and it is the unique measure satisfying p(A; x
Ag) = p1(Ay)p2(As) for all A; x Ay € C. This completes the proof. O
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Definition 16.2.6. The unique measure ;2 on F; x F3 in the above theorem is called the product measure and
is denoted by 11 X po. The measure space (21 X Qo, F1 X Fa, 1 X u2) is called the product measure space.

16.3 Fubini-Tonelli theorems

Let f : Q1 x Qo — Rbe a (F; x Fo, B(R))-measurable function. Equations (16.2.3) and (16.2.4) suggest
that the integral of f w.r.t. ;1 X uo may be evaluated as iterated integrals, using the formulas

/ f (1, 22) 1 X piz (d (101, 22)) = / [ f (21, 22) i (d:m] 112 (d2) (163.1)
Ql XQQ Qz Ql
and
/ f (1, z2) p1 X po (d(zy,22)) = / [ f(z1,22) p2 (dm)] w1 (dzxy) . (16.3.2)
Q1 xQ2 01 Qo

Here, the left sides of both (16.3.1) and (16.3.2) are simply the integral of f on the space 2 = 1 x {9 w.r.t.
the measure p1 = p1 X po. The expressions on the right sides of (16.3.1) and (16.3.2) are, however, iterated
integrals, where integrals of sections of f are evaluated first and then the resulting sectional integrals are
integrated again to get the final expression. Conditions for the validity of (16.3.1) and (16.3.2) are provided
by the Fubini-Tonelli theorems stated below.

Theorem 16.3.1. (Tonelli’s theorem). Let (€2;, F;, 11i) , @ = 1,2 be o-finite measure spaces and let f : ; X

Qs — R be a nonnegative (F; x JF3)-measurable function. If R = [~o0, oc], then
gi(z1) = | [z, 22)pe(des): Q1 — R is  (F,B(R))-measurable (16.3.3)
Q2
and
g2 (z2) = [ f(z1,22) 1 (dzy) : Q2 — R is (Fp, B(R)) -measurable. (16.3.4)
1971
Further
/ fdp = / grdpy = / g2dpiy (16.3.5)
Q1 %09 (951 Qo

where p = p1 X po.

Proof. If f = I4 for some A in F; X JFa, the result follows from the previous theorem. By the linearity
of integrals, the result now holds for all simple nonnegative functions f. For a general nonnegative function
[ there exist a sequence { f,}, -, of nonnegative simple functions such that f;, (z1,2z2) 1 f (21, z2) for all

(z1,22) € Q1 xQ9. Write g1, (1) = / fn (x1,22) o (dze). Then, g1, is Fi-measurable forall n > 1, g1,
Q

’s are nondecreasing, and by the MCT,

o (z1) = /Q f (21, 22) i (d)

= lim [ f, (21, 72) p2 (dr2)

n—00

= lim gip (21) (16.3.6)

n—o0
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for all x1 € 1. Thus, g7 is <]-'1, )> measurable. Since (16.3.5) holds for simple functions, / fndp =
/ gindp for all n > 1. Hence, by repeated applications of the MCT, it follows that

/ fau = tim [ fudp

n—oo

= lim gindp

n—o0

=/ (tim o)
= /91d/~61-

The proofs of (16.3.4) and the second equality in (16.3.5) are similar. ]

Theorem 16.3.2. (Fubini’s theorem). Let (€2;, F;, ;) ,¢ = 1,2 be o-finite measure spaces and let f €
L' (Q1 x Qo, F1 X Fa, ju1 X p12). Then there exist sets B; € F;,i = 1,2 such that

1. i (Qz\Bz) =0fori = 1, 2,

2. forxy € By, f (x1,-) € L' (Qq, Fa, 12), the function

g1(x1) = fQ (w1, 2)padxs for x1 € By
0, for =1 € Bf

is F1-measurable and
/ g1dpy = / fd(pr x p2), (16.3.7)
Ql Ql XQZ

3. for gy € By, f(-,22) € LY(Q4, F1, j11), the function

Jo., fl@1,22)prdey for zp € By
g2(w2) =
0, for zo € BS

is Fo-measurable and

/ ggdug :/ fd(ul X MQ). (16.3.8)
Q9 Q1 xQ0

Proof. By Tonelli’s theorem

/ﬂleQ |fld (1 % p2) = /91 (/92 |f (z1, 22)| o (d@)) 1 (da).

So/ | fld (p1 % p2) < oo implies that g (Bf) = 0 where By = {z; : /f (1,-)| dpa < oo}. Also,
QlX

by TonelliQ’s theorem

gi1 (z1) = [T (z1,")dus  and  gi2(z1) = [~ (z1,-) dpe
QQ QZ
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are both J7-measurable and

/ gridp =/ frd (< pa), / Gr2dp :/ frd(p x p2). (16.3.9)
1951 Q1 xQo 951 Q1 xQ9

Since g; defined in 2 can be written as g1 = (911 — g12) IB,, 91 is F1 measurable. Also,

/ !gﬂdulé/ 911d,u1+/ gi2dii
Ql Q1 Ql

:/ Frd (1 x p2) +/ frd(pm x p2)
Q1 xQ9

QlXQQ
< 0.

Further, as f91x92 |fldu1 x pa < oo, by (16.3.9), g11 and g12 € L' (4, Fi1, p1). Noting that py (BS) = 0,

one gets
/ g1dp 2/ (911 — g12) I, d
o o

:/ gnfBld,ul—/ g12d B, dpy
Ql Ql

—/ gndul—/ g12dpq
Q1 Ql

which, by (16.3.9), equals/ frd(py x p2) —/ fd(pg x po) = / fd(uy x pe). Thus, 2
Q1 %x09 Q1 %09 Q1 %802
is established as well as 1 for z = 1. Similarly, we can prove 1 for 7 = 2 as well as 3. g

Few Probable Questions
1. Define product measure. Show that it is unique.
2. State and prove Tonelli’s theorem.

3. State and prove Fubini’s theorem.
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Unit 17

Course Structure

* Decomposition and Differentiations: Radon-Nikodym theorem

17.1 Introduction

This unit deals mainly with the Radon-Nikodym theorem and its implications. The Radon—Nikodym theorem
essentially states that, under certain conditions, any measure v can be expressed in this way with respect to
another measure 1 on the same space. The theorem is named after Johann Radon, who proved the theorem for
the special case where the underlying space is R™ in 1913; and Otto Nikodym who proved the general case in
1930.

Objectives

After reading this unit, you will be able to
* define absolute continuity of measure
* define singular measure

* state Radon-Nikodym theorem and define Radon-Nikodym derivative along with its various properties

17.2 Differentiation

Let us start with the definition below.

Definition 17.2.1. Let (€2, F) be a measurable space and let x and v be two measures on (€2, 7). The measure
1 1s said to be dominated by v or absolutely continuous with respect to v, written as p < v if

v(A)=0= u(A)=0 forall A € F.
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Example 17.2.2. Let f be a non-negative measurable function on a measure space (2, F,v). Let
w(A) = / fdv forall A e F.
A

Then, p is a measure on (2, F) and v(A) = 0 = p(A) = 0 forall A € F and hence p < v.

The Radon-Nikodym theorem is a sort of converse to the above example. It says that if 1 and v are o-finite
measures on a measurable space (2, F) and if ;1 < v, then there is a non-negative measurable function f on
(Q, F) such that

w(A) :/fdu forall A € F.
A

Definition 17.2.3. Let (2, ) be a measurable space and let x and v be two measures on (€2, ). Then p is
called singular w.r.t. v, written as u L v if there exists a set B € JF such that

u(B) =0 and v(B€) = 0.

It should be noted that w singular with respect to v implies hat v is singular with respect to p. Thus, the
property of being singular is symmetric. However, the property of being absolutely continuous is not. It
should also be noted that if ¢ | v and B is a set satisfying the singularity condition as given in the above
definition, then for all A € F,

p(A) = n(AN B and v(A) =v(ANB). (17.2.1)
Example 17.2.4. Let u be the Lebesgue measure restricted to (—oo, 0], that is,
1(A) = the Lebesgue measure of A N (—o0, 0];

and another measure v is defined as follows

v(A) = / e “dx.
AN(0,00)

Then 1((0, 00)) = 0 and v((—00, 0]) = 0 and the singularity condition holds with B = (—o0, 0].

Suppose that ;o and v are are two finite measures on a measurable space (€2, F). Then H. Lebesgue showed
that 14 can be decomposed as a sum of two measures, i.e.,

= fa + s
where 1, < vand ps L v.
Theorem 17.2.5. Let (2, F) be a measurable space and let 1 and o be two o-finite measures on (2, F).
1. (The Lebesgue decomposition theorem). The measure ;47 can be uniquely decomposed as
M1 = H1a + His (17.2.2)
where 111, and pi;5 are o-finite measures on (£2, F) such that p11, < 15 and p1s L po.

2. (The Radon-Nikodym theorem). There exists a non-negative measurable function / on (€2, F) such that
p1a(A) = / hdus forall A € F. (17.2.3)
A
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ProofCase 1: Suppose that ju; and yo are finite measures. Let ;1 be the measure p1 = pu1 + 2 and let H = L2,
Define a linear function 7" on H by

T(f) = / fdpa. (17.2.4)
Then, by the Cauchy-Schwarz inequality applied to the functions f and g = 1,

(/ f?dul)% (1(9))
(/ f%m)é (11 (52))3

This shows that 7" is a bounded linear functional on H with ||T|| < M = (M(Q))%. By the Riesz
representation theorem, there exists a g € L? such that

[N

()l

IN

N

IN

7(f) = [ fodu (17.2.5)
forall f € L?. Let f = I4 for A € F. Then equations (17.2.4) and (17.2.5) give
(4) =7(1a) = [ ad.
But, 0 < p1(A) < u(A) forall A € F. Hence the function g in L? satisfies
0< /A gdp < p(A) forall A € F. (17.2.6)

Let Ay = {0 < g <1}, Ay = {g = 1}, A3 = {g ¢ [0,1]}. Then equation (17.2.6) implies that
1(As) = 0. Now we define measures pi1, and p15 as follows.

pia(A) = pi(AN Ay, ms(A) =m(ANAy), AcF. (17.2.7)

Next we show that p11, << po and @15 L po. By equations (17.2.4) and (17.2.5), for all f € H,

/fdm = /gduz /fgder/fgduz
= /f(l—g)dm = /fgduz. (17.2.8)

Setting f = I4, yields
0 = pa(As).

From equation (17.2.7), since u15(AS) = 0, it follows that y115 L p12. Now, fixn > 1 and A € F. Let
f=1Iana,(1+g+...4+g" ). Then (17.2.8) implies that

/ (1 —g")dm =/ 91 +g+...+9g" dpa.
ANA; ANA;

Now, letting n — oo and using the MCT on both sides yield

fi1a(A) = / La I dps. (17.2.9)
a4 -y

g
-9

Setting h = 1 14, completes the proof of (17.2.2) and (17.2.3).
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Case 2: Suppose that 1 and pg are o-finite measures. Then there exists a countable partition {D,,} C F of
such that p1(D,,) and po(D,,) are both finite for all n > 1. Let

pV () = (-1 Dy) and w3 () = pa(- N Dy).

Then applying Case 1 to ug ") and ug ") for each n > 1, one gets measures ,ug a), ,ug 8) and a function A,

such that
i) =l O+ a0, (17.2.10)
where, for A € F,
mal / i = [ halp, dye
and ,u,(lz) 1 ,u(2 ™) Since 1 (- Z py” (+), it follows from (17.2.10) that
p1(-) = p1a() + pas(e) (17.2.11)

||M8
E
w
«
<
@]
-

[o¢]
where f114(A) =) p{ (A) and gy (-
14(A) = / hdps, A€ F,
A

(o]
where b = > " hnIp,.

n=1

Clearly, 114 < p2. The verification of the singularity of 115 and po is left as an exercise.

It remains to prove the uniqueness of the decomposition. Let

[l = fa + fhs = e + 1Y

be two decompositions of 11 where 11, and p/, are absolutely continuous with respect to p2 and ps and
w, are singular with respect to 1o. By definition, there exist sets B and B’ in F such that

p2(B) =0, pa(B') =0, and py(B°) =0, ,(B) = 0.

Let D = BU B'. Then us(D) = 0 and ps(D) < ps(B°) = 0. Similarly, (D) < ul(B'®) = 0.
Also, p2(D) = 0 implies p,(D) = 0 = pl, (D). Thus, for any A € F,

fta(A) = pa(AN D) and pig(A) = pp (AN DC).
Also

ps(AN D)
fs(AN D)

ps(AN B¢ =0.

<
< p(ANB°) =0.

Thus, u(AND) = p(AND) 4+ pus(AN D) = pg(A) and u(AND®) = u, (ANDC) +p(ANDC) =
pL (AN D) = pul(A). Hence, i (A) = p(AN D) = pul (A) forevery A € F. Thatis, 1, = p, and
hence s = pul.

0
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The o-finiteness in the above theorem can’t be dropped. For example, let 1 be the Lebesgue measure and v
be the counting measure on [0, 1]. Then p < v but there does not exist a non-negative F-measurable function

h such that pu(A) = / hdv (Check!).
A

Definition 17.2.6. Let x and v be measures on a measurable space (€2, F) and let h be a non-negative mea-
surable function such that

w(A) —/ hdv forall A € F.
A

Then h is called the Radon-Nikodym derivative of p w.r.t. v and is written as

dp
C = p.
dv

If 14(€2) < oo, and there exist two non-negative F-measurable functions ~; and hg such that

M(A):/hldyz/hgdy
A A

for all A € F, then h; = hg a.e. (v) and thus the Radon-Nikodym derivative is unique upto equivalence a.e.
(v). This also extends to the case when u is o-finite.
Theorem 17.2.7. Let v, p, j11, 2, - . . be o-finite measures on a measurable space (€2, F).
1. If 1 < o and po < ps, then p < p3 and
dpr  dpg dus
dpn _ dpdpn
dus  dps dus

2. Suppose that 41 and o are dominated by p3. Then for any «, 8 > 0, apy + Bus is dominated by us

and

dlom +Ppa) _ (i pdin
dus dus dps

d
3. If p < vand d—’u > (0 a.e. (), then v < v and
vV

dv du -1
@ = E a.e. (/J/)

4. Let {uy, } be a sequence of measures and {ay, } be a sequence of positive real numbers, that is, a;, > 0
o
for all m > 1. Define u = Zan,un.
n=1
(a) Then, p < v iff pu, < v for eachn > 1 and in this case,
dp  ~~ d
d—fj = Zan% a.e. (V).

®) pLviff u, Lvforaln > 1.

Few Probable Questions

1. State and prove he Lebesgue decomposition theorem.

2. State and prove the Radon-Nikodym theorem.
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Unit 18

Course Structure

» Signed and Complex measures

18.1 Introduction

A signed measure on a measurable space is a set function which has all the properties of a measure, except
that of non-negativity. There are two slightly different concepts of a signed measure, depending on whether
or not one allows it to take infinite values. Signed measures are usually only allowed to take finite real values,
while some textbooks allow them to take infinite values. For example, if ;2 and v are measures on (€2, ), then
A = au + Bv where o, f > 0 is a measure on (2, F). However, if « = 1, § = —1, then \ may tale both
positive as well as negative values. However, the situation can be serious when p(E) = 400 = v(E). This
situation allows us to introduce the concept of signed measures.

Objectives

After reading this unit, you will be able to

* grasp the idea of signed measures and show that every finite signed measure can be expressed as the
difference of two finite measures;

* define positive and negative sets with respect to a finite signed measure;
* state and prove Hahn decomposition theorem;

* define complex measure.

18.2 Signed Measures
Let 111 and uo be two finite measures on a measurable space (2, F). Let

v(A) = u1(A) — pe(A), forall A e F. (18.2.1)
Then v : F — R* = [—00, +00] satisfies the following:
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1. v(0) =0;

2. Forany {A,} C F with 4; N A; —@forz#j,and2| i) < oo
=1
= v(4). (18.2.2)
=1
3. Let
]l = sup > " |w(A)]: {Ap} CF, AN Aj=0forij, | JAn=Qp. (18.2.3)
] n>1

Then [|v|| is finite.
Note that 3 holds because ||| < u1(2) + p2(Q2) < oc.
Definition 18.2.1. A set function v : F — R* satisfying 1, 2 and 3 above is called a finite signed measure.

It will be shown below that every finite signed measure can be expressed as the difference of two finite
measures.

Theorem 18.2.2. Let v be a finite signed measure on (€2, F). Let

lv|(A) = sup Z| c{A CF, AinA;=0fori#j, |JAn=A43. (18.2.4)

n>1
Then |v| is a finite measure on (2, F).

Proof. From 3 of the definition, it follows that |(£2)| < co. Thus it is enough to verify that |v| is countably
additive. Let {A,,} be a countable family of disjoint sets in F. Let A = U A,,. By the definition of |v|, for
n>1
all e > 0 and n € N, there exists a countable family {Anj} of disjoint sets in F with A,, = U Ap,; such that
i>1

Z]y n;)| > v[(A )—— Hence,

ZZ Any)l > D II(An) —
n=1 j=1 n=1

Note that {Anj} is a countable family of disjoint sets in F such that A = U A, = U U Ap;. Tt follows

n>1 n>j>1
from the definition of |v| that
o oo oo
v|(A ZZ v (An)| > D Ivl(An) —
n=1j=1 n=1
Since this is true for for all € > 0, it follows that
o0
> V](An). (18.2.5)
n=1
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To get the opposite inequality, let { B; } be a countable family of disjoint sets in F such that U Bj=A= U An.

§>1 n>1
Since Bj = BjN A = U (Bj N Ay,) and v satisfies (18.2.2)
i>1
ZV BjnA,) forall j > 1.
n=1
Thus,
DolwB)l < DD BN Ay)
j=1 j=1n=1
= > ) (BN Ay (18.2.6)

n=1 j=1

Note that for each A,,, { BjN A, };>1 is a countable family of disjoint sets in F such that A,, = U (BjNAy).

i>1
o = o oo
Hence, from equation (18.2.4), it follows that |v|(Ay) > Z lv(B; N Ay)| and hence, Z lv|(An) > Z Z
J= 1 n=1 n=1 j=
oo
|v(Bj N Ay)|. From (18.2.6), it follows that Z || (A Z |v(Bj)|. This being true for every such family
n=1
{B;}, it follows that from (18.2.4) that
v|(A,) < Z lv|(A (18.2.7)
and with (18.2.5), this completes the proof. O

Definition 18.2.3. The measure |v| defined by (18.2.4) is called the total variation measure or absolute mea-
sure of the signed measure v.

Next, define the set functions

V= —, v = —. (18.2.8)
It can also be verified that both v and v~ are finite measures on (Q, F).

Definition 18.2.4. The measures v and v~ are called the positive and negative variation measures of the
signed measure v, respectively.

It follows from (18.2.8) that
v=vt—v. (18.2.9)

Thus every finite signed measure v on (2, F) s the difference of two finite measures, as claimed earlier.
Note that both v+ and v~ are dominated by |v| and all three measures are finite. By the Radon-Nikodym
theorem, there exist functions h; and hg in L*(Q2, F, |v|) such that

dvt dv~

hl, and — = h2. (18.2.10)
v djv|
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This and (18.2.9) imply that for any A € F,

V(A)—/hld\u\—/ hady] —/hdyyy, (18.2.11)
A A A

where h = hy — hgo. Thus every finite signed measure v on (€2, F) can be expressed as
v(A) = / fdp, AeF (18.2.12)
A

for some finite measure 2 on (2, F) and some f € L'(Q, F, u).
Conversely, it is easy to verify that a set function v defined in (18.2.12) for some finite measure p on (2, F)
and some f € L'(Q, F, i) is a finite signed measure. This leads to the following result.

Theorem 18.2.5. 1. A set function v on a measurable space (€2, F) is a finite signed measure iff there
exist two finite measures p; and po on (€2, F) such that v = g — po.

2. A set function v on a measurable space (€2, F) is a finite signed measure if there exists a finite measure
pon (€2, F) and some f € LY(Q, F, u) such that for all A € F,

V(A):/Afd,u.

Definition 18.2.6. Let v be a finite signed measure on a measurable space on (£2, F). A set A € F is called
a positive set for v if forany B C A, B € F,v(B) > 0. Aset A € F is called a negative set for v if for any
B C A, B e F,v(B) <0. Aisanull set if it is both positive as well as negative with respect to v.

Remark 18.2.7. If v is a finite signed measure on (€2, F), then —v is also so. We have the following.
1. If a set is positive with respect to v, then it is negative with respect to —v;
2. If a set is negative with respect to v, then it is positive with respect to —v;
3. If a set is null with respect to v, then it is so with respect to —v;

4. for a € R, av is a finite signed measure.

Exercise 18.2.8. 1. Show that the countable union of sets, positive with respect to v, is also a positive set.
2. Show that the countable union of sets, negative with respect to v, is also a negative set.

3. Show that the countable union of null sets, is also a null set.

Theorem 18.2.9. Let (2, F) be a measurable space and E € F with 0 < v(E) < +o0. Then there exists a
positive set A C F such that v(A) > 0.

Proof. If E is a positive set with respect to v, then E does not contain any negative set and in that case, we
have A = E, which is our desired set.
Otherwise, let E' contains a set negative with respect to v-measure. Let n; be the least positive integer such

1
that there is a set By C E with v(E,) < ——. If E'\ Ej is not a positive set, then let ng be the least positive
ni

integer so that there is a set £ C E'\ E; with v(E2) < ——. Continuing this process inductively, we can
2
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k—1

1
find a least positive integer ny, so that there is a set Fj, C E'\ U E; such that v(Ej) < ——. If this process
. ng
=1

o0 o0
does not stop, we take A = E'\ U E;. Then E = AU (U EZ> . The sets A and { E;} are disjoint. Hence

i=1 i=1
we have

v(E) =v(A) + > v(E).
=1

oo [e.e]
Since 0 < v(E) < +o0, the series Z v(E;) converges absolutely. Hence, Z v(E;) > —oo. Hence,
i=1 i=1

[e.e]

> 1
—00 < ZV(EZ) < —Zn—
i=1 i=1 "

1
i=1

In particular, lim n; = +oo0 and n; > 1 for ¢ > ip. We show that A is a positive set with respect to v.
1—00

o
Given € > 0, we have (n; — 1)1 < e for large value of i. As A = E\ U E;, then A has no subset with
i=1
v-measure less that —(n; — 1)~! which is greater than —e. Since e is arbitrary, then A has no subset with
negative v-measure. Hence, A is a positive set with respect to v. O

Theorem 18.2.10. (Hahn Decomposition theorem). Let v be a signed measure on a measurable space (€2, F).
Then there is a positive set A and a negative set B such that Q = AU Band AN B = 0.

Proof. We note that v can not take both values +o0o and —oo. Without any loss of generality, we may assume
that 400 is the infinite value omitted by v, that is, v(E) < +oo for all E € F (otherwise we take —v, the
result for —v implying the result for v). Let A = sup{r(A) : A is a positive set with respect to v}. Since
empty set is positive, hence A > 0. Then there is a sequence { 4,,} of positive sets such that A\ = nl;rglo v(Ay).

o0
Write A = U A,,. Since each A,, is a positive set and a countable union of positive sets is positive, hence A

n=1
is a positive set. Then

V(A) < . (18.2.13)
Since A \ A,, C A for each n, hence v(A \ A,,) > 0 for each n. Now as A = (A \ A4,) U A, hence
v(A)=v(A\ Ay,) +v(4,) > v(4,) Vn.
Hence
y(A) > A (18.2.14)

Combining (18.2.13) and (18.2.14), v(A) = A, 0 < A < co. Thus, we see that the value of \ is attained by
positive set, namely A.
Now let B = A°. Suppose F is a positive subset of B. Since £ and A are both positive sets, £'U A is also
positive, then
A>v(EUA)=v(E)+v(A)=v(E)+ A\

This implies that v(E) = 0 since 0 < A < co. Hence, B contains no positive subsets of positive v-measure.
Hence B is a negative set with the desired property. 0
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Definition 18.2.11. Let v be a signed measure on the measurable space (€2, 7). A decomposition of (2 into
two disjoint sets A and B such that A is positive and B is negative with respect to v is called the Hahn
decomposition of 2 with respect to v. We use {A, B} as a notation for Hahn decomposition of 2. We
sometimes use the notation for A* and A~ respectively in the Hahn decomposition with respect to v.

Note 18.2.12. Hahn Decomposition need not be unique. Let 2 = {a, b, ¢} and F = P (), the power set of
Q and v = 9§, — &, where J, and Jp, are defined as follows.

1, ae & 1, be E
ME)—{O B 6b<E)—{0 ¢ E

Consider A = {a} and B = {b,c}. Then AN B = and AU B = Q. Also,
V(A) =04,(A) —0p(A)=1—-0=1.

Then v(A) > 0. Also
v(B) = 04(B) — 0(B) = —1.

v({b}) = —land v({c}) = 0. Thus, v(B) < 0.
Again, if we take A; = {a,c} and By = {b} then Q = A; U By and A1 N By = (. Then A; is a positive
set and B is negative. Hence both { A, B} and {A;, B; } are Hahn decompositions of {2 with respect to v.

18.3 Complex Measures

Complex measures are defined analogously to signed measures, except that they are only permitted to take
finite complex values.

Definition 18.3.1. Let ({2, F) be a measurable space. A complex measure v on €2 is a function v : F — C
satisfying the following.

1. v(0) =0;
2. If {A,} is a disjoint collection of measurable sets, then
o0 oo
v ( An) = Z v(Ay).
n=1 n=1
There is an analogous Radon-Nikodym theorems for complex measures.

Theorem 18.3.2. (Lebesgue-Radon-Nikodym theorem). Let v be a complex measure and p be a o-finite
measure on a measurable space (£2, F). Then there exist unique complex measures v/, Vs such that

vV =14+ Vs, Where v, < p and vg L p.

Moreover, there exists an integrable function f : 2 — C, uniquely defined up to p a.e. equivalence, such that

Va(A) = /A fdy

for every A € F.
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Few Probable Questions

1. Define absolute measure of a signed measure . Show that it satisfies all the properties of a measure.
2. State and prove Hahn decomposition theorem.
3. Define Hahn decomposition of a set €. Is it unique? Justify your answer.

4. Show that a set function v on a measurable space (€2, F) is a finite signed measure iff there exist two
finite measures p1 and p9 on (€2, F) such that v = g — po.
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Unit 19

Course Structure

* Differentiation on absolute Continuity, Lebesgue differentiation Theorem

19.1 Absolutely continuous functions on R
Definition 19.1.1. A function f : R — R is absolutely continuous (a.c.) if for all ¢ > 0, there exists § > 0
such that if I; = [a;,b;], j = 1,2,...,k (k € N) are disjoint and

n

D (b —aj) <6, then Y [f(b)) — flaj)| <e.

J=1 J=1

By the mean value theorem, it follows that if f is differentiable and f’ is bounded, then f is a.c. Also, f is
a.c. implies it is uniformly continuous.

Definition 19.1.2. A function f : [a,b] — R is absolutely continuous if the function F', defined by
f(x), fa<z<b
F(z) =4 f(a), ifz <a ;
f(a), ifx>0b
is absolutely continuous.

Example 19.1.3. The functions f(z) = x is a.c. on R. Any polynomial is a.c. on any bounded interval but
not necessarily on all of R. For example, f(x) = z? is a.c. on any bounded interval but not a.c. on R, since it
is not uniformly continuous on R.

The following theorem is known as the fundamental theorem of Lebesgue integral calculus.

Theorem 19.1.4. A function f : [a,b] — R is absolutely continuous iff there is a function F' : [a,b] — R
such that F' is Lebesgue measurable and integrable w.r.t. m and such that

f(x) = f(a) + Fdm (19.1.1)

[a,x]

for all a < x < b, where m is the Lebesgue measure.
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Proof. First let (19.1.1) holds. Since / |F'|dm < oo, for any € > 0, there exists a > 0 such that

[a.b]
m(A) < 6= / |Fldm < e. (19.1.2)
A
k
Thus, if I; = (a;,b;) C [a,b], j =1,2,..., k are such that Z(bj —aj) < 6, then
j=1

k
Z faj)| < / |Fldm < e,
= uk_.1

j=1"J

since

k k
Ut ) =320,
7=1
and (19.1.2) holds. Thus, f is a.c.
Converse part is left as exercise. O
The expression (19.1.1) of an absolutely continuous f can be strengthened as follows:
Theorem 19.1.5. Let f : R — R satisfy (19.1.1). Then f is differentiable a.e. (m) and f' = F a.e. (m).

Now, we recall that a measure y on (R¥, B(R¥)) is a Radon measure if 11(A) < oo for every bounded Borel
set A. In the following, we define the differential of a Radon measure on (R¥, B(R¥)).

Definition 19.1.6. A measure p on (R¥, B(RF)) is differentiable at 2 € R* with derivative ;/(z) if for any
€ > 0, there is a > 0 such that
p(A4)

Lt Sy
ma) " (z)
for every open ball A such that z € A and diam(A) < d (diam(A) = sup{||lz — y|| : =,y € A}.

<€

Theorem 19.1.7. Let . be a Radon measure on (R, B(R¥)). Then

1. p is differentiable a.e. (m), ' is Lebesgue measurable and greater equal to 0 a.e. (m) and for all
bounded Borel sets A € B(RF,

/A Wdm < p(A).

2. Let pq(A) = / p'dm, A € B(R*. Let yu, be the unique measure on B(R¥ such that for all bounded
A
Borel sets A,
ps(A) = p(A) — pa(A).

Then
s Lm and p' =0 ae. (m).
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Unit 20

Course Structure

* Functions of Bounded variations, Riesz representation Theorem.

20.1 Functions of Bounded variations

Definition 20.1.1. Let f : [a,b] — R, where —0o < a < b < oo. Then for any partition @ = {a = z¢, z1, ..., 2, = b},
where ¢ < 1 < ... < xz, for n € N, the positive, negative and total variations of f with respect to () are

respectively defined as
n

P(f,Q) = Z (f (z5) = f ($z’—1))+

N(£,Q) = (f (@) = f(wi1)~
i=1
T(f,Q) =Y If (@) = f(zi1)|.
i=1
It is easy to verify that

(i) if f is non-decreasing, then
P(£.Q) = T(f,Q) = f(b) - f(a) and N(£,Q)=0

(ii) for any f,
P(f,Q)+N(f,Q)=T(f,Q).

Definition 20.1.2. Let f = [a,b] — R, where —0o < a < b < oo. The positive, negative and total variations
of f over [a, b] are respectively defined as

P(f,[a,b]) = SgpP(f, Q)
N(f,a,b]) = SgpN(f, Q)
T(f,[a,0]) = Sng(f, Q),
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where the supremum in each case is taken over all finite partitions @ of [a, b].

Definition 20.1.3. Let f : [a,b] — R, where —0co < a < b < oo. Then, f is said to be of bounded variation
on [a,b] if T'(f,[a,b]) < co. The set of all such functions is denoted by BV [a, b].

As noted earlier, if f is non-decreasing, then T'(f,Q) = f(b) — f(a) for each @ and hence T'(f, [a,b]) =
f(b) = f(a). It follows that if f = f1 — fa, where both f; and f; are non-decreasing, then f € BVa,b]. A
natural question is whether the converse is true. The answer is yes, as shown by the following result.

Theorem 20.1.4. Let f € BV|[a,b]. Let fi(z) = P(f,[a,z]) and fa(z) = N(f, [a,x]). Then f; and f5 are
nondecreasing in [a, b] and for all a < z < b,

f(x) = fi(z) = fa(z).

Proof. From the definition, it follows that f; and fo are nondecreasing. Then

f(0) = f(a) = P(f,[a,b]) = N(f,[a,0]),

as this can be applied to [a, z] for a < x < b. For each finite partition @ of [a, b],

FO) = fla) = > (fla)— fzi1))
=1

= P(f,Q)—N(/,Q).

Thus, P(f,Q) = f(b) — f(a) + N(f, Q). By taking supremum over all finite partitions @, it follows that
P(f,la,b]) = f(b) = f(a) + N(f,la,b]).
If f € BV][a,b], this yields f(b) — f(a) = P(f,[a,b]) — N(f,[a,b]). O

Remark 20.1.5. Since T(f,Q) = P(f,Q) + N(f,Q) = 2P(f,Q) — (f(b) — f(a)), it follows that if
f € BV]a,bl, then

T(f [a,b]) = 2P(f,[a,b]) = (f(b) = f(a))
= P(f,[a,0]) + N(f,a,b]).
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