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Unit 1

1.1 Single Species population growth

1.1.1 Malthusian Growth(Malthus)

Let N(t) be the concentration of the population at the time t.
dN

dt
is the growth rate of that population.

dN
dt

N
= Growth rate per unit of concentration

= b− d

= birth rate− death rate

= r(constant)

⇒ dN

dt
= rN

⇒ dN

N
= rdt

⇒ logN = rt+ logA

⇒ N(t) = Aert

Initially, t = 0, N(t) = N0. Hence, N0 = A.
Therefore,

N(t) = N0e
rt

This is Malthusian Growth equation.
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UNIT 1.

Figure 1.1.1

1.1.2 Logistic Population Growth Model

dN

dt
= rN

(
1− N

K

)
= rN − rN2

K

N(t) =⇒ population size at any time t.

r =⇒ growth rate.

K =⇒ carrying capacity of the population.

⇒ dN

dt
= rN − rN2

K

⇒ dN

rN − rN2

K

= dt

⇒ dN
r
K (KN −N2)

= dt

⇒ K

r
.

dN

N(K −N)
= dt

⇒ K

K × r

∫
(K −N +N)

N(K −N)
dN =

∫
dt

⇒ K

r
× 1

K

∫
dN

N
+

K

r
× 1

K

∫
dN

K −N
=

∫
dt

⇒ 1

r
logN − 1

r
log(K −N) = t+ logA1

⇒ 1

r
log

N

K −N
= t+ logA1

⇒ log
N

K −N
= rt+ logA

⇒ N

A(K −N)
= ert

2



1.1. SINGLE SPECIES POPULATION GROWTH

⇒ A(K −N)

N
= e−rt

⇒
(
K

N
− 1

)
=

1

A
e−rt

⇒ K

N
= 1 +

1

A
e−rt

⇒ N

K
=

A

A+ e−rt

Initially, t = 0, N = N0.

N0 =
AK

A+ 1
⇒ AN0 +N0 = AK

⇒ A(N0 −K) = −N0

⇒ A =
N0

K −N0

Therefore,

N(t) =
N0K
K−N0

N0
K−N0

+ e−rt

=
N0K

N0 + e−rt(K −N0)

r > 0: As t→∞, N(t)→ K

r < 0: As t→∞, N(t)→ 0.

Figure 1.1.2
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UNIT 1.

dN

dt
= rN − rN2

K
= 0

⇒ N

(
r − rN

K

)
= 0

N = 0r =
rN

K
=⇒ N = K

Figure 1.1.3

Logistic model is also called Verlhust Model.

1.1.3 Gompertz Growth Model

1

N

dN

dt
= r − S logN

⇒ 1

N

dN

dt
= ae−SN ,

[ r
S

= K
]

For equilibrium,

dN

dt
= 0 ⇒ r − S logN = 0

⇒ logN =
r

S

⇒ N = e
r
S

Let us substitute X = logN .

For

4



1.1. SINGLE SPECIES POPULATION GROWTH

Then,

dX

dt
=

1

N

dN

dt
= r − SX

⇒ dX

S
(
r
S −X

) = dt

⇒ − 1

S
log
( r
S
−X

)
= t+

1

S
logA1

⇒ − 1

S
log(r − SX) = t+

1

S
logA

⇒ log[A
1
S (r − SX)

1
S ] = −t

⇒ A
1
S (r − SX)

1
S = e−t

⇒ (r − SX)
1
S =

1

A
1
S

e−t

⇒ A(r − SX) = e−St

⇒ (r − SX) =
1

A
e−St

⇒ X =
r

S
− 1

SA
e−St

⇒ logN =
1

S

[
r − 1

A
e−St

]
⇒ N = exp

1

S
(r − 1

A
e−St)

As t→∞, N → er/S .

1.1.4 Discrete type logistic Growth Model

N(t) = N =
ker(t−t0)

1 + er(t−t0)
= Nt (1.1.1)

We know that
N(t) =

N0k

N0 + e−rt(k−N0)
[when t = 0, N = N0]

Now,

N(t) =
Ak

A+ e−rt
=

Akert

Aert + 1

When t = t0, then N = k
2 , so

k

2
=

Akert0

Aert0 + 1

=⇒ 1

2
=

Aert0

Aert0 + 1

=⇒ Aert0 + 1 = 2Aert0

=⇒ Aert0 = 1

=⇒ A =
1

ert0
= e−rt0

Then,

N(t) =
k · e−rt0 · ert

1 + e−rt0 · ert
=

k · er(t−t0)

1 + er(t−t0)

5



UNIT 1.

Now, at t = t+ 1,

Nt+1 = N(t+ 1) =
ker(t+1−t0)

1 + er(t+1−t0)
(1.1.2)

From (1.1.1),

Nt +Nte
r(t−t0) = ker(t−t0)

=⇒ Nt = er(t−t0)(k −Nt)

=⇒ er(t−t0) =
Nt

k −Nt

Now, from (1.1.2)

Nt+1 =
kerer(t−t0)

1 + erer(t−t0)

=
ker

(
Nt

k−Nt

)
1 + er

(
Nt

k−Nt

)
=

kerNt

k −Nt + erNt

=
kNte

r

k +Nt(er − 1)

Therefore,

Nt+1 =
kNte

r

k +Nt(er − 1)

Nt+2 =
kNt+1e

r

k +Nt+1(er − 1)

1.1.5 Discrete type Malthusian Model

Nt = N(t) = N0e
rt

Nt+1 = N0e
r(t+1) = N0e

rert

Nt+1 = erNt

1.2 Two species population growth

+ − Predator-prey Model
− + Host-Pathogen Model
− − Competition
+ + Symbiosis

6



1.3. PROBABILISTIC MODEL (STOCHASTIC)

1.2.1 Lotka-Volterra predator-prey Model (Host-Pathogen Model)

Let H(t) be the concentration of the prey (host) population at time t and P (t) be the concentration of predator
(parasite) population, then the governing equation is

(Host/Prey) 1
H

dH
dt = a1 − b1P

(Predator/Parasite) 1
P

dP
dt = −a2 + b2H

}
(1.2.1)

where a1, a2, b1, b2 are all positive.
a1 → growth rate pf prey in absence of predator,
b1 → predation rate,
a2 → death rate of predator in absence of prey,
b2 → conversion rate

P

H

dH

dP
=

a1 − b1P

−a2 + b2H

=⇒ −a2 + b2H

H
dH =

a1 − b1P

P
dP

=⇒ −a2 logH + b2H = a1 logP − b1P + c

=⇒ b1P + b2H − a2 logH − a1 logP = c

Initially, t = 0, H = H0, P = P0. Therefore

c = b1P0 + b2H0 − a2 logH0 − a1 logP0

∴ b1(P − P0) + b2(H −H0)− a2 log
H

H0
− a1 log

P

P0
= 0

f(x) = e−x, x > 0

x

f(x)

f(x) = ex, x > 0

x

f(x)

1.3 Probabilistic Model (Stochastic)

1.3.1 Simple Birth Model

Let in the time interval t→ t+∆t (∆t is so very small) (t, t+∆t), the probability of one birth is proportional
to ∆t, i.e. λ∆t, λ is constant. Let PN (t) be the probability that at time t, the number of individual is N . Then

PN (t+∆t) = PN (t)[1− λN∆t] + PN−1(t)λ(N − 1)∆t+O(t)

7



UNIT 1.

Then

lim
∆t→0

PN (t+∆t)− PN (t)

∆t
= −λNPN (t) + λ(N − 1)PN−1(t) + lim

∆t→0

O(∆t)

∆t

∴
d

dt
(PN (t)) = −λNPN (t) + λ(N − 1)PN−1(t) (1.3.1)

This is called differential difference equation.
The initial conditions are Pi(0) = 1, Pj(0) = 0 (i ̸= j). Putting N = i in (1.3.1), we get

d

dt
Pi(t) = −λiPi(t) + λ(i− 1)× 0 = −λiPi(t)

Solving the above equation, we get

Pi(t) = Ae−λit

Initially at t = 0, Pi(0) = 1, so A = 1 and hence

∴ Pi(t) = e−λit

Putting N = i+ 1 in (1.3.1), we get

d

dt
(Pi+1(t)) = −λ(i+ 1)Pi+1(t) + λiPi(t)

=⇒ d

dt
(Pi+1(t)) = −λ(i+ 1)Pi+1(t) + λie−λit

=⇒ d

dt
(Pi+1(t)) + λ(i+ 1)Pi+1(t) = λie−λit

This is a linear equation and its IF (integrating factor) is eλ(i+1)t.

Pi+1(t)e
λ(i+1)t =

∫
λie−λiteλ(i+1)tdt+ c

=

∫
λieλtdt+ c

= λi
eλt

λ
+ c

So,
Pi+1(t)e

λ(i+1)t = ieλt +B

Initially when t = 0, Pi+1(0) = 0, this implies B + i = 0 and so B = −i. Therefore,

Pi+1(t)e
λ(i+1)t = ieλt − i

=⇒ Pi+1(t) = ie−λ(i+1)t(eλt − 1)

=⇒ Pi+1(t) = ie−λit(1− e−λt)

Now,

Pi(t) = e−λit

Pi+1(t) = ie−λit(1− e−λt)

8



1.3. PROBABILISTIC MODEL (STOCHASTIC)

Proceeding in this way,

Pi+2(t) =
i(i+ 1)

2
e−λit[1− e−λt]2

=

(
i+ 1
2

)
e−λit[1− e−λt]2

...

Therefore,

PN (t) =

(
N − 1
N − i

)
e−λit[1− e−λt]N−i

1.3.2 Pure Death Model

Let the probability of one death per individual in time interval (t, t + ∆t) be proportional to ∆t, i.e. µ∆t,
where µ is a constant.

Then

PN (t+∆t) = PN (t)[1− µN∆t] + PN+1(t)µ(N + 1)∆t+O(∆t)

=⇒ lim
∆t→0

PN (t+∆t)− PN (t)

∆t
= −µNPN (t) + µ(N + 1)PN+1(t) + lim

∆t→0

O(∆t)

∆t

=⇒ d

dt
(PN (t)) = −µNPN (t) + µ(N + 1)PN+1(t) (1.3.2)

Initially at t = 0, Pi(0) = 1 and Pj(0) = 0 for j > i. Putting N = i, i− 1, . . . in (1.3.2), we get

d

dt
(Pi(t)) = −µiPi(t) + µ(i+ 1)Pi+1(t)

=⇒ d

dt
(Pi(t)) = −µiPi(t) [since Pi+1(t) = 0]

Solving the above equation, we get

Pi(t) = Ae−µit

As at t = 0, Pi(0) = 1, so A = 1 and therefore

Pi(t) = e−µit

Putting N = i− 1 in (1.3.2), we obtain

d

dt
Pi−1(t) = −µ(i− 1)Pi−1(t) + µ(i− 1 + 1)Pi(t)

=⇒ d

dt
Pi−1(t) = −µ(i− 1)Pi−1(t) + µie−µit

=⇒ d

dt
Pi−1(t) + µ(i− 1)Pi−1(t) = µie−µit

9
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This is a linear equation and its I.F. is eµ(i−1)t. Therefore,

Pi−1(t)e
µ(i−1)t =

∫
µie−µiteµ(i−1)tdt+ c

=

∫
µie−µtdt+ c

= −µie−µt

µ
+B

= −ie−µt +B

Initially at t = 0, Pi−1 = 0, so B − i = 0, i.e., B = i. Hence,

Pi−1(t)e
µ(i−1)t = −ie−µt + i = i(1− e−µt)

=⇒ Pi−1(t) = ie−µ(i−1)t(1− e−µt)

=⇒ Pi−1(t) = ie−µit(eµt − 1)

Therefore,

Pi(t) = e−µit

Pi−1(t) = ie−µit(eµt − 1)

Proceeding in this way, we get

Pi−2(t) =

(
i
2

)
e−µit(eµt − 1)2

Pi−3(t) =

(
i
3

)
e−µit(eµt − 1)3

...

PN (t) =

(
i

i−N

)
e−µit(eµt − 1)i−N for N < i,

=

(
i
N

)
e−µit(eµt − 1)i−N

[
as
(
n
r

)
=

(
n

n− r

)]
Therefore, for N < i

PN (t) =

(
i
N

)
e−µit(eµt − 1)i−N

1.3.3 Simple Birth and Death Process

Let, in time interval (t, t+∆t), the probability of one birth be proportional to ∆t, i.e. λ∆t and the probability
of one death be also proportional to ∆t, i.e. µ∆t. Then

PN (t+∆t) = PN−1(t)λ(N − 1)∆t+ PN+1(t)µ(N + 1)∆t+ PN (t)(1−Nλ∆t− µN∆t) +O(∆t)

=⇒ lim
∆t→0

PN (t+∆t)− PN (t)

∆t
= λ(N − 1)PN−1(t) + µ(N + 1)PN+1(t)− (λ+ µ)NPN (t) + 0

=⇒ d

dt
(PN (t)) = λ(N − 1)PN−1(t) + µ(N + 1)PN+1(t)− (λ+ µ)NPN (t)

(1.3.3)

10
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Multiplying (1.3.3) by N and summing over N , we get

∞∑
N=0

N
d

dt
(PN (t)) = λ

∞∑
N=1

N(N − 1)PN−1(t) + µ
∞∑

N=0

N(N + 1)PN+1(t)− (λ+ µ)
∞∑

N=0

N2PN (t)

Rewriting this using dummy indices, we obtain

d

dt

∞∑
N=0

NPN (t) = λ
∞∑

N=0

(N + 1)NPN (t) + µ
∞∑

N=0

(N − 1)NPN (t)− (λ+ µ)
∞∑

N=0

N2PN (t)

=

∞∑
N=0

PN (t)[N(N + 1)λ+N(N − 1)µ− (λ+ µ)N2]

=
∞∑

N=0

PN (t)[N2λ+Nλ+N2µ−Nµ− λN2 − µN2]

=
∞∑

N=0

N(λ− µ)PN (t)

= (λ− µ)

∞∑
N=0

NPN (t)

Taking M(N, t) =
∑∞

N=0NPN (t), we have

d

dt
M(N, t) = (λ− µ)M(N, t)

Solving this we get
M(N, t) = Ae(λ−µ)t

Initially, at t = 0, N = i and Pi(0) = 1, Pj(0) = 0 for j ̸= i. So

M(N, 0) = P1(0) + 2P2(0) + · · ·+ iPi(0) + · · · = i

and hence A = i.
∴ M(N, t) = ie(λ−µ)t

Multiplying (1.3.3) by N2 and summing over N we get

∞∑
N=0

N2 d

dt
(PN (t)) = λ

∞∑
N=1

N2(N − 1)PN−1(t) + µ
∞∑

N=0

N2(N + 1)PN+1(t)− (λ+ µ)
∞∑

N=0

N3PN (t)

= λ

∞∑
N=0

(N + 1)2NPN (t) + µ

∞∑
N=0

(N − 1)2NPN (t)− (λ+ µ)

∞∑
N=0

N3PN (t)

=
∞∑

N=0

NPN (t)[λN2 + 2Nλ+ λ+ µN2 − 2Nµ+ µ− λN2 − µN2]

=
∞∑

N=0

NPN (t)[(λ− µ)2N + (λ+ µ)]

= 2(λ− µ)

∞∑
N=0

N2PN (t) + (λ+ µ)

∞∑
N=0

NPN (t)

11
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Taking M2(N, t) =
∑∞

N=0N
2PN (t), we obtain

d

dt
M2(N, t) = 2(λ− µ)M2(N, t) + (λ+ µ)M(N, t)

=⇒ d

dt
M2(N, t)− 2(λ− µ)M2(N, t) = (λ+ µ)ie(λ−µ)t

This is linear and its I.F. is e−2(λ−µ)t. Therefore,

M2(N, t)e−2(λ−µ)t = i(λ+ µ)

∫
e(λ−µ)te−2(λ−µ)tdt

= i(λ+ µ)
e−(λ−µ)t

−(λ− µ)
+ C

∴ M2(N, t) = − i(λ+ µ)

(λ− µ)
e(λ−µ)t + Ce2(λ−µ)t

Initially at t = 0, N = i and Pi(0) = 1, Pj(0) = 0 for j ̸= i. So

M2(N, 0) = M2(i, 0) =

∞∑
N=0

N2PN (t) = i2

which in turn gives

i2 = − i(λ+ µ)

(λ− µ)
+ C =⇒ C = i2 +

i(λ+ µ)

(λ− µ)

∴ M2(N, t) = − i(λ+ µ)

(λ− µ)
e(λ−µ)t +

(
i2 +

i(λ+ µ)

(λ− µ)

)
e2(λ−µ)t

Var(N, t) = − i(λ+ µ)

(λ− µ)
e(λ−µ)t +

(
i2 +

i(λ+ µ)

(λ− µ)

)
e2(λ−µ)t − i2e2(λ−µ)t

=
i(λ+ µ)

(λ− µ)
e(λ−µ)t

(
e(λ−µ)t − 1

)
Recall the equation (1.3.3)

d

dt
(PN (t)) = −(λ+ µ)NPN (t) + λ(N − 1)PN−1(t) + µ(N + 1)PN+1(t)

To solve this equation, we introduce a function known as generating function ϕ(z, t), defined as

ϕ(z, t) =
∞∑

N=0

zNPN (t) (1.3.4)

Multiplying (1.3.3) by zN and summing over N , we get

∞∑
N=0

zN
d

dt
(PN (t)) = −(λ+ µ)

∞∑
N=0

zNNPN (t) + λ
∞∑

N=0

zN (N − 1)PN−1(t) + µ
∞∑

N=0

zN (N + 1)PN+1(t)

(1.3.5)
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1.3. PROBABILISTIC MODEL (STOCHASTIC)

From (1.3.4) we can derive that

∂

∂t
ϕ(z, t) =

∞∑
N=0

zN
d

dt
(PN (t))

∂

∂z
ϕ(z, t) =

∞∑
N=0

NzN−1PN (t)

=⇒ z
∂

∂z
ϕ(z, t) =

∞∑
N=0

NzNPN (t)

Therefore, from (1.3.5), we get

∂

∂t
ϕ(z, t) = −(λ+ µ)z

∂

∂z
ϕ(z, t) + λz2

∂

∂z
ϕ(z, t) + µz

∂

∂z
ϕ(z, t)

=⇒ ∂ϕ

∂t
=

∂ϕ

∂z
[λz2 − λz − µz + µ]

=⇒ ∂ϕ

∂t
− ∂ϕ

∂z
(λz − µ)(z − 1) = 0

This is first order PDE. The auxiliary equations are

dt

1
= − dz

(z − 1)(λz − µ)
=

dϕ

0

Solving we get, ϕ = C1 (constant),

dt = − dz

(z − 1)(λz − µ)
= −

[
1

z − 1
− λ

λz − µ

]
· dz

λ− µ

Integrating both sides,

− (λ− µ)t = log(z − 1)− log(λz − µ) + logA

=⇒ − (λ− µ)t = log
z − 1

λz − µ
+ logA

=⇒ z − 1

λz − µ
= Be−(λ−µ)t

=⇒ B =
z − 1

λz − µ
e(λ−µ)t

=⇒ C =
1

B
=

µ− λz

1− z
e−(λ−µ)t

The general solution is

ϕ(z, t) = f

(
µ− λz

1− z
e−(λ−µ)t

)
(1.3.6)

where f is an arbitrary function.
Again

ϕ(z, t) =

∞∑
N=0

zNPN (t)

Putting t = 0, N = i, we obtain
ϕ(z, 0) = zi

13
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Now from (1.3.6),

ϕ(z, 0) = f

(
µ− λz

1− z

)
Thus zi = f(ξ) where

ξ =
µ− λz

1− z

=⇒ ξ − ξz = µ− λz

=⇒ z(λ− ξ) = µ− ξ

=⇒ z =
µ− ξ

λ− ξ
=

ξ − µ

ξ − λ

So we get

f(ξ) =

(
ξ − µ

ξ − λ

)i

Therefore,

ϕ(z, t) =

[
µ−λz
1−z e−(λ−µ)t − µ
µ−λz
1−z e−(λ−µ)t − λ

]i

=

[
(µ− λz)e−(λ−µ)t − µ(1− z)

(µ− λz)e−(λ−µ)t − λ(1− z)

]i
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Unit 2

2.1 Two species population growth

+ − Predator-prey Model
− + Host-Pathogen Model
− − Competition
+ + Symbiosis

2.1.1 Lotka-Volterra predator-prey Model (Host-Pathogen Model)

Let H(t) be the concentration of the prey (host) population at time t and P (t) be the concentration of predator
(parasite) population, then the governing equation is

(Host/Prey) 1
H

dH
dt = a1 − b1P

(Predator/Parasite) 1
P

dP
dt = −a2 + b2H

}
(2.1.1)

where a1, a2, b1, b2 are all positive.
a1 → growth rate pf prey in absence of predator,
b1 → predation rate,
a2 → death rate of predator in absence of prey,
b2 → conversion rate

P

H

dH

dP
=

a1 − b1P

−a2 + b2H

=⇒ −a2 + b2H

H
dH =

a1 − b1P

P
dP

=⇒ −a2 logH + b2H = a1 logP − b1P + c

=⇒ b1P + b2H − a2 logH − a1 logP = c

Initially, t = 0, H = H0, P = P0. Therefore

c = b1P0 + b2H0 − a2 logH0 − a1 logP0

=⇒ b1(P − P0) + b2(H −H0)− a2 log
H

H0
− a1 log

P

P0
= 0

=⇒ log

(
H

H0

)a2

+ log

(
P

P0

)a1

+ b1(P − P0) + b2(H −H0) = 0

=⇒
(

H

H0

)a2 ( P

P0

)a1

= Exp[b1(P − P0) + b2(H −H0)]
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For equilibrium, we have dH
dt = 0, dPdt = 0. So,

H(a1 − b1P ) = 0 and P (−a2 + b2H) = 0

=⇒ H = 0, P ∗ =
a1
b1

and P = 0, H∗ =
a2
b2

Stability

V (H,P ) =

[
a1 − b1P −b1H

b2P −a2 + b2H

]
, V (H∗, P ∗) =

[
0 −b1H∗

b2P
∗ 0

]
The characteristic equation of V (H∗, P ∗) is (for interior equilibrium)∣∣∣∣0− λ −b1H∗

b2P
∗ 0− λ

∣∣∣∣ = 0

=⇒ λ2 + b1b2H
∗P ∗ = 0

=⇒ λ2 + b1b2 ·
a2
b2
· a1
b1

= 0

=⇒ λ2 + a1a2 = 0

=⇒ λ = ±i
√
a1a2

Stability by Perturbation Method

Let H = H∗ + h and P = P ∗ + p where h, p > 0 and are so small such that their powers and products can
be neglected. Then

dh

dt
= a1(H

∗ + h)− b1(H
∗ + h)(P ∗ + p)

= a1H
∗ + a1h− b1H

∗P ∗ − b1hP
∗ − b1H

∗p− b1hp

= a1h− b1hP
∗ − b1H

∗p

= a1h− b1h ·
a1
b1
− b1p ·

a2
b2

= −a2b1p

b2

and
dp

dt
= −a2(P ∗ + p) + b2(H

∗ + h)(P ∗ + p)

= −a2P ∗ − a2p+ b2H
∗P ∗ + b2H

∗p+ b2P
∗h+ b2hp

= −a2p+ b2H
∗p+ b2P

∗h

= −a2p+ b2p ·
a2
b2

+ b2h ·
a1
b1

=
a1b2h

b1

Then

dh

dp
=
−a2b1p

b2
a1b2h
b1

= −a2b
2
1

a1b22
· p
h
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which gives a1b22hdh+ a2b
2
1pdp = 0. Integrating we get

a1b
2
2

h2

2
+ a2b

2
1

p2

2
= A

=⇒ h2

2A
a1b22

+
p2

2A
a2b21

= 1

This is an equation of ellipse and so the phase plane is elliptic. Therefore, the system is stable at (H∗, P ∗).

2.1.2 Gauss Competition Model

1

N1

dN1

dt
= r1 − a11N1 − a12N2 (2.1.2)

1

N2

dN2

dt
= r2 − a21N1 − a22N2 (2.1.3)

N1(t), N2(t)→ Two competing species,
r1 → growth rate of N1,
r2 → growth rate of N2,
a11, a22 → Intra species competition coefficient,
a12, a21 → Inter species competition coefficient,
a12 → Effect of competition of N2 on N1,
a21 → Effect of competition of N1 on N2.

Equilibria

dN1

dt
= 0,

dN2

dt
= 0

=⇒ r1 − a11N1 − a12N2 = 0, r2 − a21N1 − a22N2 = 0

=⇒ a11N1 + a12N2 = r1, a21N1 + a22N2 = r2

Solving these two equations, we get

N1

a22r1 − a12r2
=

N2

a11r2 − a21r1
=

1

a11a22 − a12a21

Therefore, we get the solution

N∗
1 =

(
a22r1 − a12r2
a11a22 − a12a21

)
, N∗

2 =

(
a11r2 − a21r1
a11a22 − a12a21

)
Now a11N1 + a12N2 = r1 and a21N1 + a22N2 = r2 can be expressed as

N1
r1
a11

+
N2
r1
a12

= 1

N1
r2
a21

+
N2
r1
a22

= 1
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Stability

Let N1 = N∗
1 + n1, N2 = N∗

2 where n1 is so small such that the square and higher powers can be neglected.
Then from (2.1.2) we get

dn1

dt
= r1(N

∗
1 + n1)− a11(N

∗
1 + n1)

2 − a12N
∗
2 (N

∗
1 + n1)

= (r1N
∗
1 − a11N

∗2
1 − a12N

∗
1N

∗
2 ) + r1n1 − 2a11N

∗
1n1 − a11n

2
1 − a12n1N

∗
2

= r1n1 − 2a11N
∗
1n1 − a12n1N

∗
2

= n1(r1 − a11N
∗
1 − a12N

∗
2 )− a11n1N

∗
1

= −a11n1N
∗
1

=⇒ dn1

n1
= −a11N∗

1dt

Integrating we get
log n1 = −a11N∗

1 t+ logA =⇒ n1 = Ae−a11N∗
1 t

We can observe that n1 → 0 as t→∞. Therefore, (N∗
1 , N

∗
2 ) is stable.

Stability of equilibrium solution of Gauss’s equation

Recall (2.1.2) and (2.1.3)

1

N1

dN1

dt
= r1 − a11N1 − a12N2

1

N2

dN2

dt
= r2 − a21N1 − a22N2

and (N∗
1 , N

∗
2 ) being the solution of dN1

dt = 0, dN2
dt = 0 satisfy

r1 − a11N
∗
1 − a12N

∗
2 = 0,

r2 − a21N
∗
1 − a22N

∗
2 = 0

Now let N1 = N∗
1 + n1 and N2 = N∗

2 + n2 where n1, n2 > 0 and are so small such that their powers and
products can be neglected. Then from (2.1.2) we get

dn1

dt
= r1(N

∗
1 + n1)− a11(N

∗
1 + n1)

2 − a12(N
∗
1 + n1)(N

∗
2 + n2)

= (r1N
∗
1 − a11N

∗2
1 − a12N

∗
1N

∗
2 ) + r1n1 − 2a11N

∗
1n1 − a11n

2
1 − a12n1N

∗
2 − a12n2N

∗
1 − a12n1n2

= r1n1 − 2a11N
∗
1n1 − a12n1N

∗
2 − a12n2N

∗
1

= n1(r1 − a11N
∗
1 − a12N

∗
2 )− a11n1N

∗
1 − a12n2N

∗
1

= −(a11n1 + a12n2)N
∗
1

and from (2.1.3) we obtain

dn2

dt
= r2(N

∗
2 + n2)− a21(N

∗
1 + n1)(N

∗
2 + n2)− a22(N

∗
2 + n2)

2

= (r2N
∗
2 − a21N

∗
1N

∗
2 − a22N

∗2
2 ) + r2n2 − 2a22N

∗
2n2 − a21n1N

∗
2 − a21n2N

∗
1 − a22n

2
2

= r2n2 − 2a22N
∗
2n2 − a21n1N

∗
2 − a21n2N

∗
1

= n2(r2 − a21N
∗
1 − a22N

∗
2 )− a22n2N

∗
2 − a21n1N

∗
2

= −(a22n2 − a21n1)N
∗
2
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We can represent these values of dn1
dt and dn2

dt as

d

dt

(
n1

n2

)
=

(
−a11N∗

1 −a12N∗
1

−a21N∗
2 −a22N∗

2

)(
n1

n2

)
Thus we have got a matrix equation

d

dt
N = AN where A =

(
−a11N∗

1 −a12N∗
1

−a21N∗
2 −a22N∗

2

)
, N =

(
n1

n2

)
Now the eigen value equation of the matrix A is Avl = λlvl where λl’s and vl’s (for l = 1, 2) are the eigen
values and eigen vectors of A respectively.

Let N =
∑

l vle
λlt, then

dN

dt
=
∑
l

vlλle
λlt =

∑
l

Avle
λlt = A

∑
l

vle
λlt = AN

Therefore, N =
∑

l vle
λlt is a solution of the matrix equation. Now

N =
∑
l

vle
λlt =⇒

(
n1

n2

)
=
∑
l

(
vl1
vl2

)
eλlt

n1 =
∑
l

vl1e
λlt and n2 =

∑
l

vl2e
λlt

Let λl = (Re λl) + i(Im λl), then

n1 =
∑
l

vl1e
(Re λl)t [cos (Im λl)t+ i sin (Im λl)t]

So, if Re (λl) < 0 for l = 1, 2, then n1, n2 → 0 as t→∞. In this case we have stable equilibrium.

2.2 Several species populations

Let Ni(t), for i = 1, 2, . . . , n, be the number of individuals of the i-th species, then the general Lotka-Volterra
type model for n-species population is given by

dNi

dt
= kiNi −

n∑
i,j=1

αijNiNj

= kiNi − αiiN
2
i −

n∑
i,j=1
i̸=j

αijNiNj

= kiNi

(
1− Ni

ki
αii

)
−

n∑
i,j=1
i̸=j

αijNiNj

where Ki is the growth rate of the i-th species, αii is a self-interaction parameter for the i-th species, αij is the
interaction parameter denoting the effect of j-th species on the i-th species and ki

αii
is the carrying capacity.
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Equilibrium is given by

dNi

dt
= 0

=⇒ kiNi −
n∑

i,j=1

αijNiNj = 0

=⇒ ki =

n∑
j=1

αijN
∗
j = 0

This can be written as
AN = K =⇒ N = A−1K (provided |A| ̸= 0)

where

A =


α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
...

αn1 αn2 · · · αnn

 , K =


k1
k2
...
kn

 and N =


N∗

1

N∗
2

...
N∗

n

 .

Stability Analysis

Let Ni = N∗
i + xi, for i = 1, 2, . . . , n, where xi’s are so small such that their powers and products can be

neglected.

dNi

dt
= kiNi −

n∑
i,j=1

αijNiNj

=⇒ d

dt
(N∗

i + xi) = ki(N
∗
i + xi)−

n∑
i,j=1

αij(N
∗
i + xi)(N

∗
j + xj)

=⇒ dxi
dt

= (N∗
i + xi)[ki −

n∑
j=1

αij(N
∗
j + xj)]

Since, at equilibrium,

ki =
n∑

j=1

αijN
∗
j

we have

dxi
dt

= (N∗
i + xi)(−

n∑
j=1

αijxj)

= −N∗
i

n∑
j=1

αijxj =

n∑
j=1

βijxj

where βij = −N∗
i αij . In matrix notation

dX

dt
= BX
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where

B =


β11 β12 · · · β1n
β21 β22 · · · β2n

...
...

...
βn1 βn2 · · · βnn

 .

Using the eigen equation Bvl = λlvl, we get that a solution of the matrix equation is given by

X =
∑
l

vle
λlt =⇒

x1
...
xn

 =
∑
l

vl1
...
vln

 eλlt

Therefore, xi =
∑

l vlie
λlt. Putting λl = (Re λl) + i(Im λl), we get

xi =
∑
l

vlie
(Re λl)t [cos (Im λl)t+ i sin (Im λl)t]

• If Re(λl) < 0 for all l, then xi → 0 as t→∞ and stability arise.

• If Re(λl) > 0 for all l, then xi →∞ as t→∞ and the system is unstable.

• If Re(λl) < 0 for all l except l = m, then xi → vmie
(Re λm)t [cos (Im λm)t+ i sin (Im λm)t] as

t→∞ and the system is unstable.

For i ̸= j,

(i) αij > 0 ⇒ Competition

(ii) αij < 0 ⇒ Symbiosis

(iii) αij = −αji ⇒ Prey-predator

2.2.1 Stability of Gompertz growth model for n-species

Let us consider the model equation described by

1

Ni

dNi

dt
= ki −

n∑
j=1

αij lnNj

This model can be solved by putting lnNi = xi. Then

dxi
dt

=
1

Ni

dNi

dt
= ki −

n∑
j=1

αijxj
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Unit 3

3.1 Leslie-Gower Predator-Prey Model

The dynamic relationship between predators and preys has long been and will continue to be one of the
dominant themes due to its universal existence and importance. Leslie introduced the following two species
Leslie-Gower predator-prey model: {

ẋ(t) = (r1 − b1x)x− p(x)y

ẏ(t) =
(
r2 − a2y

x

)
y

(3.1.1)

where x(t), y(t) are population density of the prey and predator at time t respectively, r1, r2 are the intrinsic
growth rates of prey and predator respectively, b1 measures the strength of competition among individuals
of species x, r1

b1
is the carrying capacity of the prey in the absence of the predator. The predator consumes

the prey according to the functional response p(x) and grows logistically with growth rate r2 and carrying
capacity r2x

a2
proportional to the population size of the prey.

a2 is measure of the food quantity that the prey provides and converted to predator birth. The term y
x is the

Leslie-Gower term which measures the loss in the predator population due to rarity of its favourite food.

3.2 Modified Leslie-Gower and Holling type-II schemesẋ(t) =
(
r1 − b1x− a1y

x+k1

)
x,

ẏ(t) =
(
r2 − a2y

x+k2

)
y

(3.2.1)

with x(0) ≥ 0 and y(0) ≥ 0, where r1, b1, r2, a2 have the same meaning as in the system (3.1.1), a1 is
the maximum value which per capita reduction rate of x can attain and k1, k2 measure the extent to which
environment provides protection to prey x and predator y respectively.

3.2.1 Global stability

We shall prove the global stability of system (3.2.1) by constructing a suitable Lyapunov function. First of all,
it is verify that the system (3.2.1) has three trivial equilibria E0 = (0, 0), E1 =

(
r1
b1
, 0
)

and E2 =
(
0, r2k2a2

)
.

Theorem 3.2.1. Let us assume the following condition:

r2k2
a2

<
r1k1
a1

Then the system (3.2.1) has a unique interior equilibrium E∗(x∗, y∗) (that is, x∗ > 0 and y∗ > 0).

Units 3 & 4
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3.2. MODIFIED LESLIE-GOWER AND HOLLING TYPE-II SCHEMES

Proof. From system (3.2.1), such a point satisfies

(r1 − b1x
∗)(x∗ + k1) = a1y

∗ (3.2.2)

y∗ =
r2(x

∗ + k2)

a2
(3.2.3)

Now

r1x
∗ − b1x

∗2 + r1k1 − b1k1x
∗ =

a1r2(x
∗ + k2)

a2

=⇒ − a2b1x
∗2 + (r1a2 − b1k1a2 − a1r2)x

∗ + a2r1k1 − a1r2k2 = 0

=⇒ a2b1x
∗2 + (a1r2 − r1a2 + b1k1a2)x

∗ + a1r2k2 − a2r1k1 = 0

Solving the above equation we get

x∗± =
1

2a2b1
(−(a1r2 − r1a2 + b1k1a2)±∆

1
2 )

where
∆ = (a1r2 − r1a2 + b1k1a2)

2 − 4a2b1(a1r2k2 − a2r1k1)

Clearly ∆ is non-negative if r2k2
a2

< r1k1
a1

holds. Moreover, simple algebraic calculations show that under our
assumed condition x∗+ > 0 and x∗− < 0. Therefore, the system (3.2.1) possesses a unique interior equilibrium
E∗(x∗, y∗) given by

x∗ =
1

2a2b1
(−(a1r2 − r1a2 + b1k1a2) + ∆

1
2 )

y∗ =
r2(x

∗ + k2)

a2

Linear analysis of model (3.2.1) shows that if r1 ≤ r2 and k1 ≥ k2, then E∗(x∗, y∗) is locally stable.

Theorem 3.2.2. The interior equilibrium E∗(x∗, y∗) is globally asymptotically stable if

L1 <
r1k1
2a1

(3.2.4)

k1 < 2k2 (3.2.5)

4(r1 + b1k+1) < a1 (3.2.6)

where
L1 =

1

4a2b1
(a2r1(r1 + 4) + (r2 + 1)2(r1 + b1k2)).

Proof. The proof is based on a positive definite Lyapunov function. Let V (x, y) = V1(x, y)+V2(x, y) where

V1(x, y) = (x∗ + k1)
(
x− x∗ − x∗ ln

( x

x∗

))
and V2(x, y) =

a1(x
∗ + k2)

a2

(
y − y∗ − y∗ ln

(
y

y∗

))
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UNIT 3.

This function is defined and continuous on Int
(
R2
+

)
. It can be easily verified that the function V (x, y) is zero

at equilibrium (x∗, y∗) and is positive for all other positive values of x and y, and thus E∗(x∗, y∗) is the global
minimum of V .

The time derivative of V1 along the solution of system (3.2.1) is

dV1

dt
=

(x∗ + k1)(x− x∗)

x

(
r1 − b1x−

a1y

x+ k1

)
x

and using (3.2.2), we get

dV1

dt
= (x∗ + k1)(x− x∗)

(
−b1(x− x∗) +

a1y
∗

x∗ + k1
− a1y

x+ k1

)
= (x∗ + k1)(x− x∗)

(
−b1(x− x∗) +

a1y
∗(x+ k1)− a1y(x

∗ + k1)

(x+ k1)(x∗ + k1)

)
= (x∗ + k1)(x− x∗)

(
−b1(x− x∗) +

−a1k1(y − y∗)− a1x(y − y∗) + a1y(x− x∗)

(x+ k1)(x∗ + k1)

)
Similarly,

dV2

dt
=

a1(x
∗ + k2)(y − y∗)

a2y

(
r2 −

a2y

x+ k2

)
y

and we use (3.2.3) to get

dV2

dt
=

a1(x
∗ + k2)(y − y∗)

a2

(
a2y

∗

x∗ + k2
− a2y

x+ k2

)
= a1(x

∗ + k2)(y − y∗)

(
a2y

∗(x+ k2)− y(x∗ + k2)

(x+ k2)(x∗ + k2)

)
= a1(x

∗ + k2)(y − y∗)

(
−k2(y − y∗)− x(y − y∗) + y(x− x∗)

(x+ k2)(x∗ + k2)

)
Now, computing dV

dt with the help of dV1
dt and dV2

dt yields

dV

dt
=

(
−b1(x∗ + k1) +

a1y

x+ k1

)
(x− x∗)2 +

(
−a1 +

a1y

x+ k2

)
(x− x∗)(y − y∗)− a1(y − y∗)2 (3.2.7)

The above equation can be written as
dV

dt
= −XtMX

where

M =

(
−g(x, y) −h(x, y)
−h(x, y) a1

)
and X =

(
x− x∗

y − y∗

)
,

g(x, y) = −b1(x∗ + k1) +
a1y

x+ k1

h(x, y) =
1

2

(
−a1 +

a1y

x+ k2

)
From (3.2.7), it is obvious that dV

dt < 0 if the matrix M is positive definite. Now from Sylvester’s crite-
ria we know that a matrix is positive definite if and only if all of its upper-left submatrices are of positive
determinants. Here, since a1 > 0, M is positive definite if and only if
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3.2. MODIFIED LESLIE-GOWER AND HOLLING TYPE-II SCHEMES

(i) g(x, y) < 0 and

(ii) ϕ(x, y) = −a1g(x, y)− h2(x, y) < 0.

Proof of (i):

g(x, y) = −b1(x∗ + k1) +
a1y

x+ k1

= −r1 +
a1y

∗

x∗ + k1
+

a1y

x+ k1
[using (3.2.2)]

Let A be the set defined by

A =

{
(x, y) ∈ R2

+ : 0 ≤ x ≤ r1
b1
, 0 ≤ x+ y ≤ L1

}
where L1 is as previously defined. Then A is positively invariant and all solutions of (3.2.1) initiating in R2

+

are ultimately bounded with respect to R2
+ and eventually enter the attracting set A.

So, asA is an attracting positively invariant set and inA, all solutions satisfy 0 ≤ x ≤ r1
b1

and 0 ≤ x+ y ≤
L1, then

g(x, y) ≤ −r1 +
a1
k1

(y + y∗) ≤ −r1 +
2a1L1

k1

Therefore, if (3.2.4) holds, then for all (x, y) ∈ A, g(x, y) < 0 for all t ≥ 0.
Proof of (ii):

ϕ(x, y) = −a1
(
−b1(x∗ + k1) +

a1y

x+ k1

)
− 1

4

(
−a1 +

a1y

x+ k2

)2

Then

∂ϕ(x, y)

∂y
=
−a21

x+ k1
− 1

2

(
−a21

x+ k2
+

a21y

(x+ k2)2

)
,

∂2ϕ(x, y)

∂y2
= − a21

2(x+ k2)2
< 0

Hence ∂ϕ(x,y)
∂y is strictly decreasing in R+ with respect to y.

Now,
∂ϕ(x, y)

∂y

∣∣∣∣
y=0

=
−a21

x+ k1
+

a21
2(x+ k2)

=
a21(−x− 2k2 + k1)

2(x+ k1)(x+ k2)

Consequently, if (3.2.5) holds,
∂ϕ(x, y)

∂y

∣∣∣∣
y=0

< 0

in R+ and so ϕ(x, y) is strictly decreasing in R+. This yields, for (x, y) ∈ A,

ϕ(x, y) < a1b1(x
∗ + k1)−

1

4
a21

As 0 ≤ x∗ ≤ r1
b1

, then ϕ(x, y) < a1(r1 + b1k1 − (1/4)a1), and finally due to (3.2.6), for all (x, y) ∈ A, we
get ϕ(x, y) < 0.

It follows that if the hypothesis of (3.2.4), (3.2.5) and (3.2.6) are satisfied, then dV
dt < 0 along all trajectories

in the first quadrant except (x∗, y∗), so that E∗(x∗, y∗) is globally asymptotically stable.
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Unit 4

5.1 Epidemic Models

A basic epidemic model can be used to understand the dynamics of epidemic. We will separate the population
into three classes determined by the state of individual relative to the diseases.

Those who do not have the disease and can potentially get the disease are called susceptible.
Individuals who can infect others are called infective.
Individuals who have either died or recovered and no longer can infect the others are called recovered.

Possible transmission is as follows:

Susceptible
(S)

disease−−−−→
β

Infected
(I)

died or cured−−−−−−−→
γ

Recovered
(R)

Fig: Compartmental model

S(t), I(t) and R(t) represent the number of individuals in the susceptible, infected and recovered class
respectively.

We assume that there is no immigration or size emigration to the total population (N ), that is,

S + I +R = constant = N

Let β be the transmission rate. We assume that the rate of infection is βSI , that is, the product of susceptible
and infected individuals with the transmission rate. The removal rate is assumed to be constant. Based on
these we can write the model as:

Kermack-McKendrick model


dS
dt = −βSI
dI
dt = βSI − γI ( S-I-R model)
dR
dt = γI

or,

dS

dt
= −βSI + γI

dI

dt
= βSI − γI ( S-I-S model)

Units 5 & 6
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5.1. EPIDEMIC MODELS

Epidemic will persists until:

dI

dt
> 0

=⇒ (βS − γ)I > 0

=⇒ βS − γ > 0

=⇒ βS

γ
> 0

Initially S = N and let

R0 =
βN

γ

R0 is called the basic reproduction number. Then from the above equations we can deduce that
if R0 > 1, the disease will persist,
if R0 < 1, the disease will die out.

We see that there is maximum size of population in which there can be an epidemic, so for an epidemic we
must have

N >
γ

β

Now from the S-I-R model, we get

dI

dS
= −1 + γ

βS

=⇒ dI =

(
−1 + γ

βS

)
=⇒ I =

γ

β
lnS − S + lnC

Initially I = 0, S = N , so

0 =
γ

β
lnN −N + lnC

Therefore,

I(t) =
γ

β
lnS − S +N − γ

β
lnN

=
γ

β
ln

S

N
+ (N − S) (5.1.1)

When I = 0, we get that the transcendental equation

0 =
γ

β
ln

S

N
+ (N − S) (5.1.2)

We can not easily solve the equation (5.1.2). We see that the right hand side of (5.1.2) is zero when S = N
and approaches negative infinity as S → 0. Thus the other value of S must be much greater than zero.
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UNIT 4.

5.2 S-E-I-R Model

dS

dt
= µN − βc

SI

N
− µS

dE

dt
= βc

SI

N
− (σ + µ)E

dI

dt
= σE − (γ + µ)I

dR

dt
= γI − µR

S + E + I +R = constant = N → total population size
µ→ birth and death rate
β → transmission rate
c→ compartmental constant
σ → transmission rate from exposed to infected class
γ → recovery rate

Since, S+E+I+R = constant, the last equation is redundant. Hence, we try to solve the first three equations
and find (S∗, E∗, I∗).

For endemic equilibrium

dI

dt
= 0 =⇒ σE∗ − (γ + µ)I∗ = 0

=⇒ E∗ =
(γ + µ)I∗

σ
dE

dt
= 0 =⇒ βc

S∗I∗

N
= (σ + µ)E∗

=⇒ βc
S∗I∗

N
=

(σ + µ)(γ + µ)

σ
I∗

=⇒ S∗ =
N(σ + µ)(γ + µ)

βcσ

dS

dt
= 0 =⇒ µN = βc

S∗I∗

N
+ µS∗

=⇒ µN

S∗ =
βc

N
I∗ + µ

=⇒ I∗ =
N

βc

(
µN

S∗ − µ

)
Now I∗ > 0 implies

Nµ

βc

(
N

S∗ − 1

)
> 0

=⇒ N

S∗ − 1 > 0

=⇒ N > S∗ =
N(σ + µ)(γ + µ)

βcσ

=⇒ βcσ

(σ + µ)(γ + µ)
> 1
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5.2. S-E-I-R MODEL

Therefore,

R0 =
βcσ

(σ + µ)(γ + µ)

Stable if R0 < 1← (S, 0, 0)→ disease free,
Stable if R+ 0 > 1← (S∗, E∗, I∗)→ endemic equilibrium

For the S-E-I-R Model, we have

dS

dt
= µN − βc

SI

N
− µS = f1(S,E, I)

dE

dt
= βc

SI

N
− (σ + µ)E = f2(S,E, I)

dI

dt
= σE − (γ + µ)I = f3(S,E, I)

Stability

For stability, consider the variational matrix
∂f1
∂S

∂f1
∂E

∂f1
∂I

∂f2
∂S

∂f2
∂E

∂f2
∂I

∂f3
∂S

∂f3
∂E

∂f3
∂I

 =


−βcI∗

N − µ 0 −βcS∗

N

βcI∗

N −(σ + µ) βcS∗

N

0 σ −(γ + µ)



=


−µN

S∗ 0 −βcS∗

N

βcI∗

N −(σ + µ) βcS∗

N

0 σ −(γ + µ)


[

Since, I∗ =
N

βc

(
µN

S∗ − µ

)
=⇒ −βcI∗

N
− µ = −µN

S∗

]
The characteristic equation is∣∣∣∣∣∣∣∣

−µN
S∗ − λ 0 −βcS∗

N

βcI∗

N −(σ + µ)− λ βcS∗

N

0 σ −(γ + µ)− λ

∣∣∣∣∣∣∣∣ = 0

=⇒
(
−µN

S∗ − λ

)[
{−(σ + µ)− λ} {−(γ + µ)− λ} − βcS∗σ

N

]
− βcS∗

N

σβcI∗

N
= 0

=⇒ −
(
µN

S∗ + λ

)[
{(σ + µ) + λ} {(γ + µ) + λ} − βcS∗σ

N

]
− σβ2c2S∗I∗

N2
= 0

=⇒
(
µN

S∗ + λ

)[
(σ + µ)(γ + µ) + (γ + σ + 2µ)λ+ λ2 − βcS∗σ

N

]
+

σβ2c2S∗I∗

N2
= 0

=⇒ λ3 +

[
(γ + σ + 2µ) +

µN

S∗

]
λ2 +

[
(σ + µ)(γ + µ) +

µN

S∗ (γ + σ + 2µ)− βcS∗σ

N

]
λ

+

[
µN

S∗ (σ + µ)(γ + µ)− βcσµ+
σβ2c2S∗I∗

N2

]
= 0

By Routh Hurwitz criteria for stability, we get

(γ + σ + 2µ) +
µN

S∗ > 0
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and
µN

S∗ (σ + µ)(γ + µ)− βcσµ+
σβ2c2S∗I∗

N2
> 0

=⇒ µN
N(σ+µ)(γ+µ)

βcσ

(σ + µ)(γ + µ)− βcσµ+
σβc

N

(
βcS∗I∗

N2

)
> 0

=⇒ βcσµ− βcσµ+
σβc

N
(µN − µS∗) > 0

=⇒ βcσµ− σβcµS∗

N
> 0

=⇒ βcσµ− σβcµ

N

N(σ + µ)(γ + µ)

βcσ
> 0

=⇒ βcσµ− µ(σ + µ)(γ + µ) > 0

=⇒ βcσ

(σ + µ)(γ + µ)
> 1

Therefore, R0 > 1 is the criteria for stability.

5.3 Eco-epidemic Model

Let us consider a prey-predator model with infection prey population.
Assumptions:

1. The total population density of prey is N .

2. The population density of predator is F .

3. In the absence of disease, the prey population follows logistic growth, that is,

dN

dt
= rN

(
1− N

K

)
(5.3.1)

4. In the presence of disease, the prey population is divided into two groups: susceptible prey (R) and
infected prey (U ).

5. Only the susceptible preys are capable of reproducing with logistic law

dR

dt
= aR

(
1− R

K

)
= aR− bR2 where b =

a

K

(5.3.2)

6. The disease is only spreading among preys.

7. A susceptible prey becomes infected under the attacks of many viruses. The attacking rate as well as
predation rate follows the law of mass-action.

Considering the above assumptions we can write the system as:

Susceptible prey
dR

dt
= aR− bR2 − cFR− λUR = f1(R,U, F )

Infected prey
dU

dt
= λUR− dUF − eU = f2(R,U, F )

Predator
dF

dt
= cFR+ dUF − fF = f3(R,U, F )
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5.3. ECO-EPIDEMIC MODEL

c→ predation rate,
λ→ rate of infection,
e→ death rate of infected prey,
f → death rate of predator.

The types of equilibrium points are

• (R, 0, 0)

• (R,U, 0)→ predator-free equilibrium,

• (R, 0, F )→ disease-free prey predator equilibrium,

• (R,U, F )→ interior equilibrium

For equilibrium,
dR

dt
= 0 =⇒ aR− bR2 − cFR− λUR = 0

=⇒ a− bR− cF − λU = 0

=⇒ bR+ λU + cF = a (5.3.3)

dU

dt
= 0 =⇒ λUR− dUF − eU = 0

=⇒ λR− dF − e = 0

=⇒ λR+ 0U − dF = e (5.3.4)

dF

dt
= 0 =⇒ cFR+ dUF − fF = 0

=⇒ cR+ dU + 0F = f (5.3.5)

Now from (5.3.3), (5.3.4) and (5.3.5) applying Cramer’s rule, we get

A =

b λ c
λ 0 −d
c d 0

 ; detA = bd2 − λcd+ cλd = bd2,

A1 =

a λ c
e 0 −d
f d 0

 ; detA1 = ad2 − λfd+ ced = d(ad+ ce− fλ)

∴ R∗ =
(ad+ ce− fλ)

bd

A2 =

b a c
λ e −d
c f 0

 ; detA2 = bdf − acd+ cλf − ce2 = f(bd+ λc)− c(ad+ ce)

∴ U∗ =
f(bd+ λc)− c(ad+ ce)

bd2

A3 =

b λ a
λ 0 e
c d f

 ; detA3 = −bde− λ2f + λce+ aλd = λ(ad− λf) + e(λc− bd)
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∴ F ∗ =
λ(ad− λf) + e(λc− bd)

bd2

(R∗, U∗, F ∗) as determined above gives the interior equilibrium.

Stability

The variational matrix is
∂f1
∂R

∂f1
∂U

∂f1
∂F

∂f2
∂R

∂f2
∂U

∂f2
∂F

∂f3
∂R

∂f3
∂U

∂f3
∂F

 =


a− 2bR∗ − cF ∗ − λU∗ −λR∗ −cR∗

λU∗ λR∗ − dF ∗ − e −dU∗

cF ∗ dF ∗ cR∗ + dU∗ − f


=

−bR∗ −λR∗ −cR∗

λU∗ 0 −dU∗

cF ∗ dF ∗ 0

 [using (5.3.3), (5.3.4) and (5.3.5)]

The characteristic equation is∣∣∣∣∣∣
−bR∗ − µ −λR∗ −cR∗

λU∗ 0− µ −dU∗

cF ∗ dF ∗ 0− µ

∣∣∣∣∣∣ = 0

=⇒ (−bR∗ − µ)(µ2 + d2F ∗U∗) + λR∗(−λU∗µ+ cdU∗F ∗)− cR∗(λU∗dF ∗ + cF ∗µ) = 0

=⇒ (bR∗ + µ)(µ2 + d2F ∗U∗) + λR∗(λU∗µ− cdU∗F ∗) + cR∗(λU∗dF ∗ + cF ∗µ) = 0

=⇒ µ3 + bR∗µ2 + d2F ∗U∗µ+ bd2R∗F ∗U∗ + (λ2R∗U∗ + c2R∗F ∗)µ = 0

=⇒ µ3 + µ2(bR∗) + µ(d2F ∗U∗ + λ2R∗U∗ + c2R∗F ∗) + bd2R∗F ∗U∗ = 0

Comparing the equation with µ3+ a1µ
2+ a2µ+ a3 = 0, we have a1 = bR∗ > 0, a3 = d2F ∗U∗bR∗ > 0 and

a1a2 − a3 = bR∗(d2F ∗U∗ + λ2R∗U∗ + c2R∗F ∗)− bd2R∗F ∗U∗ = bR∗(λ2R∗U∗ + c2R∗F ∗) > 0

Hence by Routh Hurwitz criteria, the characteristic equation has roots with negative real parts and so the
interior equilibrium (R∗, U∗, F ∗) is stable.

Stability for (R,U,0)

J(R,U, 0) =

a− 2bR− λU −λR −cR
λU λR− e −dU
0 0 cR+ dU − f


λ1 = cR+ dU − f

(a− 2bR− λU − γ)(λR− e− γ) + λ2RU = 0

=⇒ γ2 + γ(2bR+ λU − a+ e− λR) + (λR− e)(a− 2bR− λU) + λ2RU = 0

=⇒ γ2 + γ(2bR+ λU − a+ e− λR) + (λR− e)(a− 2bR)− λ2RU + λeU + λ2RU = 0

=⇒ γ2 + γ(2bR+ λU − a+ e− λR) + (λR− e)(a− 2bR) + λeU = 0

cR+ dU − f < 0
2bR+ λU − a+ e− λR > 0
(λR− e)(a− 2bR) + λeU > 0

 (5.3.6)

If the three conditions in (5.3.6) hold, then the roots will have negative real parts and so (R,U, 0) will be
stable. Otherwise, it is unstable.
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5.4. HORIZONTAL AND VERTICAL TRANSMISSION

5.4 Horizontal and Vertical Transmission

Horizontal: From one individual to another in the same generation. This kind of transmission can occur
by direct contact (licking, touching, biting) or indirect contact (by vectors).

Vertical: Passing a disease vertically from parent to offspring. Typically mother transmits the disease by
means of bodily fluid, breast milk.

5.5 Ratio dependent prey predator model

The classical model, prey dependent prey predator model, Michaelis-Menten (chemical-kinetics) functional
response and logistic growth in the prey population.

dN
dt = rN

(
1− N

K

)
− mN

a+NP
dP
dt = mNP

a+N − dP

}
(5.5.1)

N(t) and P (t) be the concentration of prey and predator population respectively.
Based on the ratio dependent theory, system (5.5.1) can be written as

dN
dt = rN

(
1− N

K

)
− mNP

N+aP
dP
dt = αmNP

N+aP − dP

}
(5.5.2)

α is conversion rate and N + aP is prey-predator dependence concentration.
For equilibrium,

dN

dt
= 0 =⇒ rN

(
1− N

K

)
− mNP

N + aP
= 0

=⇒ r

(
1− N

K

)
− mP

N + aP
= 0

=⇒ r

(
1− N

K

)
=

mP

N + aP
(5.5.3)

dP

dt
= 0 =⇒ αmNP

N + aP
− dP = 0

=⇒ α

(
mP

N + aP

)
N = dP

=⇒ αr

(
1− N

K

)
N = dP (5.5.4)

Dividing (5.5.4) by (5.5.3) we get

αN =
dP
mP

N+aP

=⇒ αN =
d(N + aP

m
=⇒ αmN = dN + adP

=⇒ P =

(
αm− d

ad

)
N
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UNIT 4.

Putting this value of P in (5.5.4) we get

αr

(
1− N

K

)
N = d

(
αm− d

ad

)
N

=⇒ αr

(
1− N

K

)
=

αm− d

a

=⇒ 1− N

K
=

αm− d

aαr

=⇒ N

K
= 1− αm− d

aαr

=⇒ N = K

(
1− αm− d

aαr

)
∴ N∗ = K

(
1− αm− d

aαr

)

and P ∗ =
(
αm−d
ad

)
N∗ gives

P ∗ =

(
K(αm− d)

ad

)(
1− αm− d

aαr

)

(N∗, P ∗) as determined above gives the interior equilibrium.

Stability

dN

dt
= rN

(
1− N

K

)
− mNP

N + aP
= f1(N,P )

dP

dt
=

αmNP

N + aP
− dP = f2(N,P )

Consider the variational matrix

[
r
(
1− N∗

K

)
+N∗ (− r

K

)
− mP ∗

N∗+aP ∗ + mN∗P ∗

(N∗+aP ∗)2 − mN∗

N∗+aP ∗ − amN∗P ∗

(N∗+aP ∗)2

αmP ∗

N∗+aP ∗ − αmN∗P ∗

(N∗+aP ∗)2
αmN∗

N∗+aP ∗ − aαmN∗P ∗

(N∗+aP ∗)2 − d

]

=

− rN∗

K + mN∗P ∗

(N∗+aP ∗)2 − mN∗2

(N∗+aP ∗)2

αamP ∗2

(N∗+aP ∗)2
αmN∗2

(N∗+aP ∗)2 − d


=

[
AN∗P ∗ − rN∗

K −AN∗2

aαP ∗2A αN∗2A− d

] [
let A =

m

(N∗ + aP ∗)2

]
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5.5. RATIO DEPENDENT PREY PREDATOR MODEL

The characteristic equation is∣∣∣∣∣AN∗P ∗ − rN∗

K − λ −AN∗2

aαP ∗2A αN∗2A− d− λ

∣∣∣∣∣ = 0

=⇒
(
AN∗P ∗ − rN∗

K
− λ

)(
αN∗2A− d− λ

)
+ aαA2P ∗2N∗2 = 0

=⇒ αA2N∗3P ∗ − dAN∗P ∗ − rαN∗3A

K
+

rdN∗

K
+ λ

(
rN∗

K
−AN∗P ∗ − αN∗2A+ d

)
+ λ2 + aαA2P ∗2N∗2 = 0

=⇒ λ2 + λ

(
rN∗

K
−AN∗P ∗ − αN∗2A+ d

)
+

(
αA2N∗3P ∗ − dAN∗P ∗ − rαN∗3A

K
+

rdN∗

K
+ aαA2P ∗2N∗2

)
= 0

The equilibrium point (N∗, P ∗) is stable (that is, the roots of the characteristic equation have negative real
parts) if the following conditions are satisfied:

rN∗

K
−AN∗P ∗ − αN∗2A+ d > 0

=⇒
(
rN∗

K
+ d

)
>
(
AN∗P ∗ + αN∗2A

)
and

αA2N∗3P ∗ − dAN∗P ∗ − rαN∗3A

K
+

rdN∗

K
+ aαA2P ∗2N∗2 > 0

=⇒
(
αA2N∗3P ∗ +

rdN∗

K
+ aαA2P ∗2N∗2

)
>

(
dAN∗P ∗ +

rαN∗3A

K

)
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Unit 6

7.1 Delay-Differential Equation

7.1.1 Delay-Population Model

Let us assume that, the rate at which a population is growing at time t depends on the magnitude of the
population at the same time. For example, Mathusian population growth

dN(t)

dt
= rN(t), N(0) = N0. (7.1.1)

Now, if we know that, present growth rate depends not on the present magnitude but on the magnitude of
earlier time. For example, the present growth rate of a family of flies depends not on the number of flies right
now but rather on the number of flies laying a certain number of eggs a week ago. In this case,

dN(t)

dt
= rN(t− τ) (7.1.2)

where τ is the average incubation period of the egg is a time delay or time lag.

7.1.2 Types of Delay-differential equation

Discrete delay-differential equation

dx

dt
= r1x(t) + r2x(t− τ) (7.1.3)

where r1, r2 are constants.
dx(t)

dt
= rx(t)

[
1− x(t− τ)

x∗

]
when x∗ is the carrying capacity.

Continuous or Distributed delay-differential equation

For distributed time delay, the logic equation becomes

dx(t)

dt
= rx(t)

[
1− 1

x∗

∫ t

−∞
K(t− τ)x(τ)dτ

]
(7.1.4)

which is the example of integro-differential equation. The function K(t− τ) is called delay-kernel.

Units 7 & 8
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7.1. DELAY-DIFFERENTIAL EQUATION

7.1.3 Discrete time delay model

Let us consider a model equation of the form

dx(t)

dt
= rx(t)g(x(t− τ)) (7.1.5)

where g(x(t− τ)) = 1− x(t− τ)

x∗
. An equilibrium point of equation (7.1.5) is the value of x∗ such that

x(t)g(x(t− τ)) = 0

⇒ x∗g(x∗) = 0.

Therefore, the logistic delay equation has two equilibrium points, x = 0 and x = x∗.

Theorem 7.1.1. If all the solutions of the equation

du(t)

dt
= r

[
g(x∗)u(t) + x∗g′(x∗)u(t− τ)

]
tends to zero as t → ∞, then every solution x(t) of equation (7.1.5) with |x(t) − x∗| sufficiently small tend
to the equilibrium point x∗ as t→∞.

7.1.4 Asymptotic Stability

For the differential equation
dx(t)

dt
= xg(x) (7.1.6)

which in this case τ = 0 and the equilibrium point x∗ is said to be asymptotically stable if and only if

d

dx
(xg(x))

∣∣
x=x∗ = g (x∗) + x∗g′ (x∗) < 0. (7.1.7)

Therefore, the equilibrium x∗ = 0 is asymptotically stable if g(0) < 0 and x∗ > 0 is asymptotically stable if
g′(x∗) < 0.

a. For x∗ = 0,
du

dt
= rg(0)u(t). Since, g(0) = 1 > 0. Therefore, the equilibrium point x∗ = 0 is

unstable.

b. For equilibrium x∗ > 0,

g(x∗) = 0

u′(t) = rx∗g′(x∗)u(t− τ)

= rbu(t− τ). [where, b = x∗g′(x∗)] (7.1.8)

In order to determine whether all the solutions of the linear differential equation tends to zero as t→∞,
we take a solution of the form

u(t) = c eλt (c is a constant).

Putting this in (7.1.8),

cλ eλt = rbc eλ(t−τ)

⇒ λ eλt = rb eλt · e−λτ

⇒ λ = rb e−λτ . (7.1.9)
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UNIT 6.

This is transcendental equation for τ having infinitely many roots.

We assume that, if all the characteristic roots of equation (7.1.9) have negative real parts, then all
solutions of the equation (7.1.8) tend to zero as t → ∞. In the delay case with τ > 0, it is possible to
show that the condition that all roots of the characteristic equation (7.1.9) have negative real part is

0 < −rbτ <
π

2
. (7.1.10)

The condition (7.1.10) implies that b < 0 and in addition to that, time lag (delay) not to be too
large. Combining the analysis with the above theorem, we see that, an equilibrium point x∗ > 0 of
dx(t)

dt
= rx(t)g(x(t− τ)) is asymptotically stable if 0 < −rx∗g′(x∗)τ <

π

2

Example 7.1.2. 1. For delay logistic model

dx(t)

dt
= rx(t)

[
1− x(t− τ)

x∗

]
.

Show that the stability condition becomes 0 < rτ < π
2 .

2. Show that the equilibrium point x∗ = k of the delay equation
dx(t)

dt
= rx(t) log

(
k

x(t− τ)

)
is asymp-

totically stable if 0 < rτ < π/2.

Solution. 1.
dx(t)

dt
= rx(t)

[
1− x(t− τ)

x∗

]
.

For logistic model, x = 0 and x = x∗ are two equilibrium points. Let

g(x(t− τ)) = 1− x(t− τ)

x∗

g′(x(t− τ))
∣∣
x=x∗ = − 1

x∗
.

Now,

x∗g′(x∗) = x∗
(
− 1

x∗

)
= −1.

Therefore, the stability condition becomes,

0 < −rbτ <
π

2
⇒ 0 < rτ <

π

2
[b = −1].

2.
dx(t)

dt
= rx(t) log

(
k

x(t− τ)

)
.
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7.2. DISTRIBUTED DELAY

Here, 0, k are two equilibrium points of the Gompertz growth model.

g(x(t− τ)) = log

[
k

x(t− τ)

]
g′(x(t− τ)) =

1
1

x(t−τ)

(
− k

(x(t− τ))2

)
= −x(t− τ)

k

k

(x(t− τ))2

= − 1

x(t− τ)

g′(k) = −1

k
[Here, x∗ = k].

Therefore, kg′(k) = −k · 1
k
= −1.

Therefore, b = −1. The stability condition becomes

0 < −rbτ <
π

2
⇒ 0 < rτ <

π

2
.

■

7.2 Distributed Delay

For discrete time delay, the logistic equation is

dx(t)

dt
= rx(t)g(x(t− τ)) (7.2.1)

where gx(t) = 1− x(t)

x∗
. In case of distributed delay, this equation can be generalised as

dx(t)

dt
= x(t)

∫ ∞

0
g(x(t− τ))p(s)ds. (7.2.2)

Here, p(s)ds represents the probability of a delay between s and s+ ds. Therefore,∫ ∞

0
p(s)ds = 1 [since τ > 0].

An equilibrium point of the integro-differential equation

dx(t)

dt
= x(t)

∫ ∞

0
g(x(t− s))p(s)ds

is a value x∗ such that,

x∗
∫ ∞

0
g(x∗)p(s)ds = 0 or, x∗g(x∗) = 0.

We see that x∗ = 0 is an equilibrium point and the equilibrium x∗ > 0 is given by g(x∗) = 0.
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UNIT 6.

7.2.1 Linearization about an equilibrium point

To linearize
dx(t)

dt
= x(t)

∫ ∞

0
g(x(t− s))p(s)ds (7.2.3)

about an equilibrium point x∗, we put u(t) = x(t)− x∗. We have,

du(t)

dt
= (u(t) + x∗)

∫ ∞

0
g(x∗ + u(t− s))p(s)ds

= (u(t) + x∗)

∫ ∞

0

[
g(x∗) + u(t− s)g′(x∗) +

(u(t− s))2

2!
g′′(x∗) + . . .

]
p(s)ds

= (u(t) + x∗)

[
g(x∗) + g′(x∗)

∫ ∞

0
u(t− s)p(s)ds+ . . .

]
= x∗g(x∗) + g(x∗)u(t) + x∗g′(x∗)

∫ ∞

0
u(t− s)p(s)ds+ . . . (7.2.4)

We are now in a state to study the integro-differential equation of the form

du(t)

dt
= au(t) + b

∫ ∞

0
u(t− s)p(s)ds (7.2.5)

where a = g(x∗), b = x∗g′(x∗), p(s) ≥ 0 for 0 < s <∞.∫ ∞

0
p(s)ds = 1.

To study the behaviour of the solution of equation (7.2.5), for a specific kernel p(s), we take the solution as

u(t) = c eλt (7.2.6)

cλ eλt = ac eλt+bc eλt
∫ ∞

0
e−λs p(s)ds

⇒ λ = a+ b

∫ ∞

0
e−λs p(s)ds

⇒ λ = a+ b · Laplace Transform of p(s)

⇒ λ = a+ bL(p(s))

⇒ λ = a+ bF (λ), (7.2.7)

where F (λ) is the Laplace transform of p(s). We shall consider two specific choices of p.∫ ∞

0
p(s)ds = 1,

∫ ∞

0
sp(s)ds = T (Average delay).

We shall make use of the following results.

1.
∫ ∞

0
e−αs ds =

1

α
;

2.
∫ ∞

0
s e−αs ds = − 1

α2
;

3.
∫ ∞

0
s2 e−αs ds =

2

α3
.
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7.2. DISTRIBUTED DELAY

Let us take p1(s) = e−
2s
T

(
4s
T2

)
.

Here, p1(0) = 0, p1(s) has the maximum value at s =
T

2
. Now,

L(p1(s)) =

∫ ∞

0
e−λs p1(s)ds

=

∫ ∞

0
e−λs · e−

2s
T

(
4s
T2

)
ds

=
4

T 2

∫ ∞

0
e−(λ+

2
T )s ·sds

=
4

T 2

([
−se−(λ+

2
T )s(

λ+ 2
T

) ]∞
0

−
∫ ∞

0

{
d

ds
(s)

∫
e−(λ+

2
T )s ds

}
ds

) [(
λ+

2

T

)
s = p

]

= − 4

T 2

∫ ∞

0
−e−(λ+

2
T )s(

λ+ 2
T

) ds
=

4

T 2
· 1(

λ+ 2
T

) ∫ ∞

0
e−(λ+

2
T )s ds

= − 4

T 2
· 1(

λ+ 2
T

)2 [ 1

e(λ+
2
T )s

]∞
0

= − 4

T 2
· 1(

λ+ 2
T

)2 [0− 1]

=
4

T 2
· 1(

λ+ 2
T

)2
=

4

λ2T 2 + 4λT + 4
.

Thus, the characteristic equation is

a+
4b

λ2T 2 + 4λT + 4
= λ

⇒ a(λ2T 2 + 4λT + 4) + 4b = λ(λ2T 2 + 4λT + 4)

⇒ λ3 +

(
4T − aT 2

T 2

)
λ2 +

4− 4aT

T 2
λ− 4(a+ b)

T 2
= 0. (7.2.8)

By Routh Hurwitz Criterion, all the roots of the above equation have negative real part,

4T − aT 2

T 2
> 0, − 4(a+ b)

T 2
> 0,

and
4T − aT 2

T 2

4− 4aT

T 2
+

4(a+ b)

T 2
> 0.

The stability conditions are,
a+ b < 0, aT < 4, − bT < (2− aT )2. (7.2.9)

For the equation,
du(t)

dt
= au(t) + b

∫ ∞

0
u(t− s)p(s)ds.

a ≡ g(x∗), b ≡ x∗g′(x∗).

If the equilibrium is,
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UNIT 6.

1. If x∗ = 0, b = 0, then the condition of stability reduces to a < 0⇒ g(x∗) < 0.

2. If x∗ > 0, then a = 0. Since, the equilibrium point satisfies the condition g(x∗) = 0. In this case, the
stability condition reduces to

0 < −x∗g′(x∗)︸ ︷︷ ︸
b

T < 4.

Example 7.2.1. p2(s) =
1

T
e−s/T , find the stability condition. (T > 0).

Solution. Now,

L(p2(s)) =

∫ ∞

0
e−λs p2(s)ds

=

∫ ∞

0
e−λs · 1

T
e−s/T ds

=
1

T

∫ ∞

0
e−(λ+

1
T )s ds

= − 1

T

[
e−(λ+

1
T )s(

λ+ 1
T

) ]∞
0

= − 1

T
(
λ+ 1

T

) [e−(λ+ 1
T )s
]∞
0

= − 1

T
(
λ+ 1

T

) [0− 1]

=
1

T
(
λ+ 1

T

) =
1

(λT + 1)
.

The characteristic equation is

λ = a+ bF (λ)

⇒ λ = a+ b · 1

λT + 1

⇒ λ =
a(λT + 1) + b

λT + 1
⇒ λ(λT + 1) = a(λT + 1) + b

⇒ λ2T + λ = aλT + a+ b

⇒ λ2T + (1− aT )λ− (a+ b) = 0

⇒ λ2 +
(1− aT )

T
λ− a+ b

T
= 0. (7.2.10)λ =

−
(
1−aT
T

)
±
√

(1−aT )2

T 2 + 4a+b
T

2
=

(
aT−1
T

)
± 1

T

√
(1− aT )2 + 4T (a+ b)

2


For stability condition of (7.2.10),

1− aT

T
> 0 and −

(
a+ b

T

)
> 0⇒ a+ b

T
< 0.

Since T > 0, then
aT < 1 and a+ b < 0.

These are the stability conditions. ■
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7.2. DISTRIBUTED DELAY

For the equation,
du(t)

dt
= au(t) + b

∫ ∞

0
u(t− s)p(s)ds.

Here, a = g(x∗) and b = x∗g′(x∗).
If

1. x∗ = 0, then g′(x∗) · x∗ = b = 0, then the stability reduces to a < 0⇒ g(x∗) < 0.

2. x∗ > 0, then a = 0. Since the equilibrium point satisfies the condition g(x∗) = 0, then the stability
condition reduces to b < 0⇒ x∗g′(x∗) < 0.
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Unit 8

9.1 Spatial Model

Let us suppose, we have a population that inhibits a patch of length L (0 ≤ x ≤ L) that does not grow and is
subject to simple diffusion.

Space

Time

f(x, t)

∂n

∂t
= D

∂2n

∂x2
. (9.1.1)

We have, the initial condition
n(x, 0) = n0(s). (9.1.2)

Let us assume that, we have homogeneous Dirichlet boundary condition

n(0, t) = 0 (9.1.3)

n(L, t) = 0. (9.1.4)

To solve equation (9.1.1) we put,

n(x, t) = S(x)T (t)→ Characteristics (9.1.5)

Putting (9.1.5) in (9.1.1), we get,

1

D

Ṫ

T
=

S′′

S

[
S′′ =

d2S

dt2
, Ṫ =

dT

dt

]
(9.1.6)

Since, space and time are independent variable. Therefore, these two can be equal if both of them equals to a
constant.

1

D

Ṫ

T
=

S′′

S
= −λ (constant). (9.1.7)

This implies
Ṫ = −DTλ S′′ = −Sλ.

Units 9 & 10
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9.1. SPATIAL MODEL

Solving, we get

T (t) = C e−Dλt

S(x) = a sin(
√
λx) + b cos(

√
λx)

n(x, t) = (a sin(
√
λx) + b cos(

√
λx))C e−Dλt

= e−Dλt
[
A sin(

√
λx) +B cos(

√
λx)
]
. (9.1.8)

By using the boundary condition,

n(0, t) = 0 ⇒ B = 0

n(L, t) = 0 ⇒ e−Dλt
[
A sin(

√
λL)

]
= 0

⇒ A sin(
√
λL) = 0

⇒ sin(
√
λL) = 0 [A ̸= 0]

⇒ sin(
√
λL) = 0 = sin kπ

⇒ λ =
k2π2

L2
, k is an integer.

nk(x, t) = e−Dλt

(
Ak sin

kπx

L

)
= e−Dt k

2π2

L

(
Ak sin

kπx

L

)
. (9.1.9)

In more general form, the solution can be written as

n(x, t) =
∞∑
k=1

Ak e−Dt k
2π2

L sin

(
kπx

L

)
. (9.1.10)

Now, using the initial condition n(x, 0) = n0,

n0 =
∞∑
k=1

Ak sin

(
kπx

L

)
. (9.1.11)

Our initial condition can be written as Fourier ‘sine’ series with the coefficient in the sine series being the
coefficients of our solution.

These coefficients can also be taken as coordinates with the various sine functions as basis vectors. We can
now use the orthogonality property of this basis vector∫ L

0
sin

(
jπx

L

)
· sin

(
kπx

L

)
dx = 0, j ̸= k

=
L

2
, j = k.

By using orthogonality property, ∫ L

0
n0(x) sin

(
kπx

L

)
dx =

L

2
Ak

or, Ak =
2

L

∫ L

0
n0(x) sin

(
kπx

L

)
dx.
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Therefore,

n0(x) =

∞∑
k=1

Ak sin
kπx

L
, where Ak =

2

L

∫ L

0
n0(x) sin

(
kπx

L

)
dx.

We now introduce the addition of growth into our system.

∂n

∂t
= D

∂2n

∂x2
.

Kierstead and Slobodkin were in phytoplankton bloom. For example, red tide out breaks. They assumed

simple exponential growth, diffusion and homogeneous Dirichlet condition, then the system becomes,

∂n

∂t
= rn+D

∂2n

∂x2
(9.1.12)

with boundary condition n(0, t) = n(L, t) = 0

initial condition n(x, 0) = n0(x).

It is possible to reduce this equation to the previously solved problem by,

n(x, t) = ert u(x, t)

∂n

∂t
= r ert u(x, t) + ert

∂u

∂t
= r ert u(x, t) +D ert

∂2u

∂x2

⇒ ∂u

∂t
= D

∂2u

∂x2
. (9.1.13)

u(0, t) = 0 = u(L, t)

u(x, 0) = u0(x) [To prove previous problem].

The solution of this equation,

u(x, t) =

∞∑
k=1

Ak e−
Dtk2π2

L2 sin

(
kπ

L

)
.

Therefore, n(x, t) =
∞∑
k=1

Ak e
(
r−Dtk2π2

L2

)
t
sin

(
kπ

L

)
. (9.1.14)
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9.1. SPATIAL MODEL

This population grow if

r − Dtk2π2

L2
> 0⇒ r >

Dtk2π2

L2
⇒ L > kπ

√
D

r

For k = 1

L > π

√
D

r
. (9.1.15)

The critical length L of the equation (9.1.15) is referred to as ‘Kiss size’. If the patch is shorter than this
length, the population collapses and if it is longer than this length, a bloom occurs.

Let us consider the non-linear model

∂n

∂t
= rn

(
1− n

k

)
+D

∂2n

∂x2
, 0 < x < L (9.1.16)

with boundary condition n(0, t) = 0 = n(L, t)

initial condition, n(x, 0) = nx(0).
(9.1.17)

Fick’s law Equation (9.1.16) contains logistic growth and simple Fickian. It is called Fisher’s equation.
Equation (9.1.16) contains three parameters r, k, D. Let

u(x, t) =
n(x, t)

k
(9.1.18)

Then (9.1.16) becomes,

∂u

∂t
= ru(1− u) +D

∂2u

∂x2
0 < x < L (9.1.19)

u(0, t) = u(L, t) = 0

u(x, 0) = u0(x).
(9.1.20)

The steady-state solution

ru(1− u) +Du′′ = 0

[
∂u

∂t
= 0

]
u(0) = u(L) = 0

(9.1.21)

We write equation (9.1.21) as
u′ = v

v′ = − r

D
u(1− u).

(9.1.22)

For equilibrium, u′ = 0, v′ = 0.

u′ gives v = 0

v′ ⇒ u = 0, u = 1.

Therefore, the equilibrium points are (0, 0) and (1, 0). The variational matrix[
0 1

− r
D (1− 2u) 0

]
.

At (0, 0), ∣∣∣∣ −λ 1
− r

D (1− 2u) −λ

∣∣∣∣ = 0 ⇒ λ2 +
r

D
(1− 2u) = 0

⇒ λ = ±
√

r

D
i.
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At (1, 0), ∣∣∣∣−λ 1
r
D −λ

∣∣∣∣ = 0 ⇒ λ = ±
√

r

D
.

Therefore, (1, 0) is saddle. For (0, 0) it is a centre. However, linearization is unreliable for non-hyperbolic
equilibrium point.

Equation (9.1.21) has a first integral, multiplying (9.1.21) by u′,

Du′u′′ + ruu′(1− u) = 0.

Integrating with respect to x,

D
(u′)2

2
+ r

(
u2

2
− u3

3

)
= c.

This equation can be written as
v2

2
+

r

D

(
u2

2
− u3

3

)
= 0. (9.1.23)

The phase-portrait is symmetric in v = u′.

Figure 9.1.1: Phase plane for the steady states of the Fisher’s equations

Let us assume that, we have a solution of equation (9.1.21) that satisfies the boundary conditions, equation
(9.1.23) may now be written as,

v2

2
+

r

D

(
u2

2
− u3

3

)
=

r

D
F (µ)

where u = µ when v = 0 at x =
L

2
.

v =
du

dx
=

√
2r

D
[F (µ)− F (u)], 0 < x <

L

2
(9.1.24)

= −
√

2r

D
[F (µ)− F (u)],

L

2
< x < L. (9.1.25)
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9.1. SPATIAL MODEL

From (9.1.24)

√
D

2r

∫ µ

0

du√
F (µ)− F (u)

=

∫ L
2

0
dx

From (9.1.25)

√
D

2r

∫ 0

µ

du√
F (µ)− F (u)

=

∫ L

L
2

dx.

(9.1.26)

L =

√
2D

r

∫ µ

0

du√
F (µ)− F (u)

. (9.1.27)

Let us take the substitution z =
u

µ
.

L =

√
2D

r

∫ 1

0

µdz√
F (µ)− F (µz)

. (9.1.28)

Equation (9.1.28) may be considered as an elliptic integral, we can deduce the following facts from (9.1.28).

1. L is an increasing function of µ for 0 ≤ µ ≤ 1.

2. lim
µ→1

L(µ)→∞.

3. lim
µ→1

L(µ) = Lc = π

√
D

r
.

Proof. 3.

lim
µ→1

L(µ) = lim
µ→1

√
2D

r

∫ 1

0

µdz√
F (µ)− F (µz)

= lim
µ→1

√
2D

r

∫ 1

0

µdz√
µ2

2 −
µ3

3 −
µ2z2

2 + µ3z3

3

= lim
µ→1

√
2D

r

∫ 1

0

dz√
1
2 −

µ
3 −

z2

2 + µz3

3

=

√
2D

r

√
2

∫ 1

0

dz√
1− z2

= 2

√
D

r
[sin−1 z]10

= 2

√
D

r

π

2

= π

√
D

r
.
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2.

lim
µ→1

L(µ) = lim
µ→1

√
2D

r

∫ 1

0

µdz√
F (µ)− F (µz)

= lim
µ→1

√
2D

r

∫ 1

0

µdz√
µ2

2 −
µ3

3 −
µ2z2

2 + µ3z3

3

= lim
µ→1

√
2D

r

∫ 1

0

dz√
1
2 −

µ
3 −

z2

2 + µz3

3

=

√
2D

r

∫ 1

0

dz√
1
2 −

1
3 −

z2

2 + z3

3

=

√
2D

r

∫ 1

0

dz√
1
2(1− z)(1 + z)− 1

3(1− z)(1 + z + z2)

=

√
2D

r

∫ 1

0

dz√
1
6(1− z) [3(1 + z)− 2(1 + z + z2)]

=
√
6

√
2D

r

∫ 1

0

dz√
(1− z)(1 + z − 2z2)

=
√
6

√
2D

r

∫ 1

0

dz√
(1− z)(1− z)(1 + 2z)

=
√
6

√
2D

r

∫ 1

0

dz

(1− z)
√
(1 + 2z)

=
√
6

√
2D

r

∫ √
3

1

pdp

p
(
1− p2−1

2

) Taking 1 + 2z = p2

=
√
6

√
2D

r

∫ √
3

1

2dp

2− p2 + 1

= 2
√
6

√
2D

r

∫ √
3

1

dp

3− p2

= 2
√
6

√
2D

r
× 1

2
√
3

[
log

∣∣∣∣∣
√
3 + p√
3− p

∣∣∣∣∣
]√4

1

= 2

√
D

r

[
log

(
2
√
3

0

)
− log

(√
3 + 1√
3− 1

)]

= 2

√
D

r

[
log∞− log

(√
3 + 1√
3− 1

)]
→∞.
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9.1. SPATIAL MODEL

9.1.1 Exponential growth and spatial spread in an infinite domain

Let us consider a simple model of exponential population growth with simple Fickian equation

∂n

∂t
= rn+D

∂2n

∂x2
(9.1.29)

with initial condition
n(x, 0) = f(x). (9.1.30)

The substitution
n(x, t) = ert u(x, t) (9.1.31)

reduces (9.1.29) into
∂u

∂t
= D

∂2u

∂x2
(9.1.32)

u(x, 0) = f(x).

We will assume that initial function f(x) goes to zero and the solution u(x, t) is bounded for large positive or
negative values of x.

Let u(x, t) = S(x)T (t).

1

D

Ṫ

T
=

S′′

S
= −λ = −k2 (9.1.33)

S′′(x) = k2S(x) = 0 (9.1.34)

The real solutions of these equations are in terms of sines and cosines. But, for convenience, we will use the
complex exponential eikx and e−ikx. Therefore, there are continuous functions of the form

u(x, t, k) = F (k) eikx−k2Dt (Solve) (9.1.35)

To write that equation (9.1.35) satisfies (9.1.32). With this we need an integral

u(x, t) =

∫ ∞

−∞
F (k) eikx−k2Dt dk. (9.1.36)

Initial condition u(x, 0) = f(x) must satisfy

f(x) =

∫ ∞

−∞
K(k) eikx dk. (9.1.37)

Equation (9.1.37) can be inverted by using Fourier inversion formula

F (k) =
1

2π

∫ ∞

−∞
f(x) e−ikx dx. (9.1.38)

Equation (9.1.37) and (9.1.38) together form a Fourier transform. Substituting (9.1.38) into (9.1.36)

u(x, t) =
1

2π

∫ ∞

−∞

[
eikx−k2Dt

∫ ∞

−∞
f(ξ) e−ikξ dξ

]
dk.

u(x, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
eikx−k2Dt−ikξ f(ξ)dξdk.
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Now,

e−Dt
[
k2− ik(x−ξ)

Dt

]
= e−Dt

[
k− i(x−ξ)

2Dt

]2
− (x−ξ)2

4D2t2

u(x, t) =
1

2π

∫ ∞

−∞
Ie−

(x−ξ)2

4Dt f(ξ)dξ

where

I =

∫ ∞

−∞
e−Dt

[
k− i(x−ξ)

2Dt

]2
dk.

Let z = k − i(x− ξ)

2Dt
. Then

I =

∫ ∞

−∞
e−Dtz2 dz

=
1

2
√
Dt

∫ ∞

−∞
e−p p−

1
2dp [p = Dtz2]

=
1

2
√
Dt

∫ ∞

0
e−p p

1
2
−1dp

=
1√
Dt

Γ

(
1

2

)
=

√
π√
Dt

.

Therefore,

u(x, t) =
1

2π

√
π√
Dt

∫ ∞

−∞
e−

(x−ξ)2

4Dt f(ξ)dξ

=
1

2
√
πDt

∫ ∞

−∞
e−

(x−ξ)2

4Dt f(ξ)dξ

=

∫ ∞

−∞
g(x− ξ, t)f(ξ)dξ (9.1.39)

where

g(x− ξ, t) =
1

2
√
πDt

e−
(x−ξ)2

4Dt . (9.1.40)

Equation (9.1.40) is known as fundamental solution of Heat equation. It describes the evolution of a point
releasing heat.

Now, from equation (9.1.29) and substituting (9.1.31) we see that a point source of size n0 will grow like

n(x, t) =
n0

2
√
πDt

ert−
(x−ξ)2

4Dt . (9.1.41)

Now, let us imagine that the population is detectable when it reaches a certain threshold density nc. We can
solve from (9.1.41)

nc =
n0

2
√
πDt

ert−
(x−ξ)2

4Dt .

log nc = log
n0

2
√
πDt

+ rt− (x− ξ)2

4Dt
.
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If we consider be the density to this critical level

log nc = log
n0

2
√
πDt

+ rt− x2

4Dt

⇒ log
nc2
√
πDt

n0
= rt− x2

4Dt

⇒ log
nc2
√
πDt

n0
= t

(
r − x2

t2
× 1

4D

)
⇒ x2

t2
− 4Dr +

4D

t
log

(
nc2
√
πDt

n0

)
= 0

⇒ x

t
= ±

√√√√4Dr − 4D

t
log

(
nc2
√
πDt

n0

)
. (9.1.42)

Taking lim
t→∞

,
x

t
→ ±2

√
Dr. (9.1.43)

The left hand side of (9.1.42) and (9.1.43) can be interpreted as the average velocity of expansion.
This average velocity of expansion tends towards a constant determined by the intrinsic growth rate of the

population and diffusive coefficient.
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UNIT-11 

 

Autonomous and Non-Autonomous System:Orbit of a map, fixed point, equilibrium point, 

periodic point, circular map, configuration space and phase space. 

 

11.1 Introduction: 

Most of the problems in physical biological and social science involved non-linear 

differential equation. In the present chapter, we introduce some central ideas and method of 

the subject and find that it gives some interesting new phenomenon that does not appearing 

linear theory. The qualitative study of differential equation is concerned with how to deduce 

improvement characteristic of the solutions of differential equations without solving them. 

Here we introduce a geometric device, the phase space which is used extensively for 

obtaining directly from the differential equation such as properties as equilibrium periodicity 

unlimited growth, stability and so on. 

We give some examples of non-linear differential equation arising in practice. The 

equation of motion for a simple problem is 

x  + 
g

l
 Sin x = 0 …………….. (11.1) 

Where „x‟ is the inclination of the string of length „l‟ of downward vertical. If there is 

a damping force proportional to the velocity of the bob of mass m, then is a equation 

becomes- 

x  +
𝑐

𝑚
𝑥 + 

g

l
 Sin x = 0 …………….. (11.2) 

for small angular deviation, Sin x ≈ x in (11.1) and (11.2) but there involves a gross 

error. 

Another non-linear differential equation is involved in the theory of vacuum tube and 

is called Vanderpol equation given by 

x  +𝜇(x
2
-1)𝑥 + x = 0 …………….. (11.3) 

where the non-linearity occurs in the second term and 𝜇 is the paramiter. 

And n-th order non-linear differential equation is of the form- 

𝑥(𝑛) = 
𝑑𝑛𝑥

𝑑𝑡𝑛  = f (t, x, 𝑥 ,…, 𝑥(𝑛−1))………………(11.4) 
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where 𝑥  = = 
𝑑𝑥

𝑑𝑡
, 𝑥  = = 

𝑑2𝑥

𝑑𝑡2 ,…………..etc 

Let us write 𝑥1 = x, 𝑥2 = 𝑥 = 𝑥1 ,…,𝑥4 = 𝑥3 , …,𝑥𝑛 = 𝑥𝑛−1 . 

Thus, 𝑥𝑛−1  = f(𝑥1, 𝑥2, … , 𝑥𝑛), 

f:𝑅𝑛+1 → 𝑅  .............................. (11.5) 

The system (1.5) is the special case of the following system of n-dimensional equations of 

first order differential equation 

𝑥1 = 𝑓1(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥2 = 𝑓2(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛),…, 𝑥𝑛 = 𝑓𝑛 (𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) 

or in complete form 𝑥𝑖 = 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)  for i=1,2,…,n. which in vector form can be 

written as  

𝑥   = 𝑓 (𝑥 , 𝑡)        ......................................(11.6) 

with 𝑥  = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑓  = (𝑓1 , 𝑓2 , … , 𝑓𝑛 ) 

In study vector function in 𝑅𝑛  =   𝑓𝑖  
𝑛
𝑖=1  

For the nxn matrix A with elements 𝑎𝑖𝑗 , We shall use the norm 

 𝐴  =   𝑎𝑖𝑗  
𝑛
𝑖=1  

 

11.2 Existence and uniqueness: 

     Regarding the existence and uniqueness and continuity of a solution of differential 

equation (1.6) the vector function 𝑓 (𝑥 , 𝑡) has to satisfy the following condition, called 

Lipschitz‟s condition. 

Lipschitz’s condition: 

Consider the function 𝑓 (𝑥 , 𝑡) with f:𝑅𝑛+1 → 𝑅 𝑡 − 𝑡0 ≤ 𝑎, 𝑥 ∈ D ⊂𝑅𝑛 . Then 𝑓 (𝑥 , 𝑡) is said 

to satisfy the Lipschitz‟s condition with respect to x if in [𝑡0 − 𝑎,𝑡0 + 𝑎] x D, we have  

 𝑓  𝑥1    , 𝑡 − 𝑓 (𝑥2     , 𝑡) ≤ 𝛼 𝑥1    − 𝑥2       

with 𝑥1     , 𝑥2     ∈ D and 𝛼 is constant, called the Lipschitz‟s constant 

        Instead of saying that 𝑓 (𝑥 , 𝑡) satisfies the Lipschitz‟s condition, we sometimes say that 

𝑓 (𝑥 , 𝑡) is called Lipschitz‟s condition in 𝑥 . 

        We now state the following theorem without proof. 

55



 

     Consider the initial value problem  

𝑥  = 𝑓 (𝑥 , 𝑡), 𝑥 (𝑡0) = 𝑥0      

with 𝑥 ∈ D ⊂𝑅𝑛 ,  𝑡 − 𝑡0 ≤ 𝑎. 

D = { 𝑥 /  𝑥1    − 𝑥2      ≤ 𝑑}, a and d are position constants. Suppose that the vector function 

𝑓 (𝑥 , 𝑡) satisfies the following conditions 

(i) 𝑓 (𝑥 , 𝑡) is continuous in G = [𝑡0 − 𝑎,𝑡0 + 𝑎] x D. 

(ii) 𝑓 (𝑥 , 𝑡) is Lipschitz‟s continuous in 𝑥 . 

Then the initial value problem has one and only solution for 

 𝑡 − 𝑡0 ≤ inf (a, d/m), M = 
𝑆𝑢𝑝
𝐺

 𝑓   

Note that the theorem (1.1) of the existence of the solution neighbourhood of t = 𝑡0. As the n-

th order non-linear differential equation is equivalent to the system of n first order differential 

equation 

𝑥𝑛 =
𝑑𝑛𝑥

𝑑𝑡𝑛
= 𝑓(𝑡, 𝑥, 𝑥1, … , 𝑥𝑛−1) 

is determine uniquely by the values prescribed for x and its 1𝑠𝑡  (n-1) derivatives at t = 𝑡0, 

provided that the function satisfies the Lipschitz‟s condition. 

 

11.3: Gronowall’s Inequality: 

Theorem 11.2(Gronowall): 

                  Assume that for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, where a is positive constant, we have the estimate  

𝜑 (t)  ≤ 𝛿1  𝛹 𝑠 𝜑 𝑠 𝑑𝑠 + 𝛿2  ............................. (11.7) 
𝑡0

In which for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, 𝜑(𝑡) and 𝛹 𝑡  are continuous function, 𝜑 𝑡 ≥ 0 and 𝛿1,  𝛿2 

position constant. Then we have for 𝑡0 ≤ 𝑡 ≤  𝑡0 + 𝑎 

𝑡

𝑡
𝛿  𝛹 𝑠 𝑑𝑠

𝜑 (t)  ≤  𝛿 𝑡
2𝑒

1 0     ......................................... (11.8) 
 

Proof: 

From (11.7) we get 

Theorem 11.1(Cauchy-Lischitz Theorem): 
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𝜑 (t)  

𝛿1  𝛹 𝑠 𝜑 𝑠 𝑑𝑠 + 𝛿2
𝑡

𝑡0

≤ 1 

Multiplying both sides by 𝛿1 𝛹 𝑡  and integrating we have 

 
𝛿1𝛹 𝑠 𝜑 𝑠 𝑑𝑠

𝛿1  𝛹 𝑠 𝜑 𝑠 𝑑𝑠 + 𝛿2
𝑡

𝑡0

𝑡

𝑡0

≤ 𝛿1  𝛹 𝑠 𝑑𝑠
𝑡

𝑡0

 

 

⇒ 𝜑 (t)  ≤  𝛿2𝑒
𝛿1  𝛹 𝑠 𝑑𝑠

𝑡
𝑡0  

 

11.4 Autonomous and Non-autonomous system: 

 Consider the system of n-differential equations of first order; 

𝑥𝑖 = 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛)  for i=1,2,…,n. which in vector form can be written as  

𝑥   = 𝑓 (𝑥 , 𝑡)   ..................................... (11.9) 

If the vector function 𝑓  occurring in (1.9) depends on 𝑥  only and not on time t, the system 

given by 

𝑥  = 𝑓 (𝑥 )   ..............................(11.10) 

is said to be autonomous. On the other hand, if the time „t‟ appears explicitly in (1.9), the 

system is said to be non-autonomous. 

11.5Phase-Space, Orbits in Autonomous System: 

 We start with a simple but important property of autonomous equation 

 𝑥  = 𝑓 (𝑥 ) .......................... (11.11) 

Translation Property: 

 Suppose that 𝑥 (t) is a solution of equation (11.11) in the domain D∈ 𝑅𝑛 . Then 𝑥 (t- 𝑡0) 

with 𝑡0 is a constant is a also a solution. 

Proof: 

Transform t→T with T = t- 𝑡0 apart from replacing t by T, equation (11.11) does not change 

as t does not occur explicitly in the right hand side. Since 𝑥 (t) is a solution of (11.11), so 𝑥 (T) 

is a solution of the transform equation.    

 

57



 

 

 

Notes: 

(i) It follows that if initial values problem 𝑥  = 𝑓 (𝑥 ), 𝑥 (0) = 𝑥 0 has the solution of 𝑥 (t) 

then the initial value problem 𝑥  = 𝑓 (𝑥 ), 𝑥 (𝑡0) = 𝑥 0has the solution 𝑥 (t- 𝑡0). 

(ii) It is to be noted that since occurs explicitly in the right hand side of the non-

autonomous system 𝑥  = 𝑓 (𝑥 ,t), so translation property does not hold for such a 

system. 

 

Now consider the equation (11.1) with 𝑥 ∈ 𝐷 ⊂ 𝑅, D is called phase-space and for 

autonomous equation it makes sense to study this space separately. Consider the harmonic 

equation 𝑥 + 𝑥 = 0 which is autonomous. To obtain the corresponding vector equation we 

put x = 𝑥1, 𝑥 = 𝑥2 to obtain 𝑥 1 = 𝑥2, 𝑥 2 = −𝑥1. This solutions of the scalar equation are 

linear combinations of constant. It is easy to space G = 𝑅 𝑥 𝑅2 . This solutions can be 

projected on the 𝑥  , 𝑥 -phase which we call the phase-plane. 

 
As time does not occur explicitly in equation (11.11), we carry out this projection for the 

solutions of this general autonomous equation. The space in which we describe the behaviour 

of the variable 𝑥1, 𝑥2, … , 𝑥𝑛  parameterized by t, is called the phase space. A point in phase 

space with co-ordinate 𝑥1(𝑡), 𝑥2(𝑡),…,𝑥𝑛(𝑡) for contain t, is called a phase point. In general, 

for increasing t, a phase point shall more through phase-space. 

Consider the equation (11.11) which written out in components becomes 

𝑥𝑖 = 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛)  for i=1,2,…,n. 
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We shall use one of the components, say 𝑓1, as a new independent variable; this required 

that 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) ≠0. With the chain rulewe obtain (n-1) equations 

𝑑𝑥2

𝑑𝑥1
=  

𝑓2(𝑥1 ,𝑥2 ,…,𝑥𝑛 )

𝑓1(𝑥1 ,𝑥2 ,…,𝑥𝑛 )
 ,…, 

𝑑𝑥𝑛

𝑑𝑥1
=  

𝑓𝑛 (𝑥1,𝑥2 ,…,𝑥𝑛 )

𝑓1(𝑥1,𝑥2,…,𝑥𝑛 )
 ......................... (11.12) 

Solution of system (11.12) in phase-space are called orbits. In the existence and 

uniqueness theorem (11.1) applies to the autonomous equation (11.11), it also applies to the 

system (11.12), describing the behaviour of the orbits in phase space will not intersect. For 

such a case the point (𝑥1, 𝑥2, … , 𝑥𝑛) on the orbit is called an ordinary point. 

In the above we have excluded the singularities of the right hand side of system (11.12) 

corresponding with the zeros of𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛). If 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) ≠0, we interchanged the 

results of 𝑓1 and 𝑓2. If the zero of 𝑓1 and 𝑓2 consider, we can take as 𝑥3 as independent 

variable, etc. 

Real problem with this construction arise in points 𝑎 = 𝑎1 , 𝑎2 , … , 𝑎𝑛  such that 𝑓1 𝑎  =

0, 𝑓2 𝑎  = 0, … , 𝑓𝑛 𝑎  = 0.  

The point 𝑎 ∈ 𝑅 is the zero  of the vectors function 𝑓 (𝑥 ) and we call it a critical point or 

singular point or an equilibrium point. 

Example 11.1:Consider the harmonic oscillator 𝑥 + 𝑥 = 0. The equivalent vector 

equation is with x = 𝑥1, 𝑥 = 𝑥2, 𝑥1 = 𝑥2, 𝑥2 = −𝑥1 

The phase space is two dimensional and (0,0) is the critical point. The orbits are described 

by the equation   

𝑑𝑥2

𝑑𝑥1
= −

𝑥1

𝑥2
 

or 𝑥1 𝑑𝑥1 + 𝑥2 𝑑𝑥2 = 0. 

or 𝑥1
2 + 𝑥2

2 =constant = C. 

Thus the orbits are concentric circles in the phase-space. 

Example 11.2: The equation 𝑥 − 𝑥 = 0  gives the orbits the phase-plane as 
𝑑𝑥2

𝑑𝑥1
=

𝑥1

𝑥2
 . 

Integration gives the family of hyperbolas 𝑥1
2 − 𝑥2

2 =constant = C. The critical point is (0,0)  
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 The arrows indicate the direction of motion of the phase points with time, the motion 

of phase points along the corresponding is called the phase-flow. 

1.6 Critical point and linearization: 

Consider the equation (11.11)  

𝑥  = 𝑓 (𝑥 ), 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛  

and we assume that the vector function 𝑓 (𝑥 ) has a zero at 𝑥 = 𝑎  with 𝑓 (𝑎 ) = 0 is a critical point 

of the equation 𝑥  = 𝑓 (𝑥 ). A critical point of the equation in phase space can be considered as 

an orbit, degenerated into a point 

 Note that a critical point corresponds with an equilibrium solution (or stationary solution) of 

the equation for all time. 

 It follows form the existence and uniqueness theorem (1.1) that an equilibrium solution 

never be reached into a finite time (if an equilibrium solution would be reached in a finite 

time, two solutions would be intersect). 

Example 11.3: 

     Consider the equation 𝑥 = −𝑥, 𝑡 ≥ 0. 

 

𝑥 = 0 is a critical point, x(t) = 0, 𝑡 ≥ 0 is equilibrium solution. 

Note that for solutions, starting in 𝑥0 ≠ 0 at t = 0 given by x(t) = 𝑥0𝑒
−𝑡  . 

We have,  lim𝑡→∞ x(t)  =  0 

60



 

Example 11.4: 

Consider the equation 𝑥 =  −𝑥2𝑡 ≥ 0. 

Now x = 0 is a critical point and x (t) = 0, t ≥0 is an equilibrium solution. The solution 

starting in 𝑥0 ≠ 0 𝑎𝑡 𝑡 = 0 and x (t) = 
1

𝑥0
−1+𝑡

 , 𝑥0 ≠ 0. 

If 𝑥0 < 0 𝑎𝑛𝑑 𝑥0 > 0, the solutions shows qualitative and quantities  difference behaviour 

for the two cases. If 𝑥0 < 0, the solutions become unbounded in a finite time. 

 In example (11.3), the solutions tend in the limit for t → ∞ towards the equilibrium 

solution, the orbits in the one dimensional phase space tends to critical point. If we consider 

the equation 𝑥 = 𝑥, 𝑡 ≥ 0, 𝑥0 ≠ 0 at t = 0, then the solution will be x(t) = 𝑥0𝑒
𝑡  so that x(t) 

→ 0 as t → −∞ i.e., the orbits tend away from the critical point. We call these phenomenon 

attractions. 

A critical point 𝑥  = 𝑎  of the equation 𝑥  = 𝑓 (𝑥 ) in 𝑅𝑛  is called positive attraction if there exists 

neighbourhood Ω𝑎 ⊂ 𝑅𝑛  of 𝑥  = 𝑎  such that 𝑥 (𝑡0) ∈ Ω𝑎  implies lim𝑡→∞ 𝑥 (t)  =  𝑎 . 

If a critical point has this property for  t → −∞ then 𝑥  = 𝑎  is called negative attractor. 

 In analysing critical points and equilibrium solutions we start by linearising the 

equation in a neighbourhood of the critical point. We assume that 𝑓 (𝑥 ) has a Taylor series 

expansion of the first degree plus higher order rest terms. So, in the case of 𝑥  = 𝑓 (𝑥 ), we write 

in the nbd of critical point 𝑥  = 𝑎  . 

𝑥  = 𝑓 (𝑥 ) = 𝑓 (𝑎 + 𝑥 − 𝑎 ) = 
𝜕𝑓  𝑎   

𝜕𝑥 
(𝑥 − 𝑎 )+ higher order term. 

We shall study linear equation with constant coefficient  

𝑥   = 
𝜕𝑓  𝑎   

𝜕𝑥 
(𝑥 − 𝑎 ) 

To simplify the notation, the point notation, the point 𝑎  is often shifted to the origin of phase 

space. Thus by putting 𝜉 = (𝑥 − 𝑎 ) we have 

𝜉 
 
 = 

𝜕𝑓  𝑎   

𝜕𝜉  
𝜉  

    Let,  
𝜕𝑓  𝑎   

𝜕𝜉  
= 𝐴, a nxn matrix with constant coefficient. So, the linearized system which we 

shall study in the nbd of 𝑥  = 𝑎  is of the form  𝜉 
 
= A𝜉 . 

Example 11.5: 

Consider the equation  

𝑥 + sin 𝑥 = 0 with −𝜋 ≤ 𝑥 ≤ 𝜋, 𝑥 ∈ 𝑅. 
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Let x = 𝑥1, 𝑥 = 𝑥2 then the above equation reduces to 𝑥1 = 𝑥2, 𝑥2 = − sin 𝑥1. 

Critical points are (𝑥1, 𝑥2) = (0, 0),(-𝜋, 0),(𝜋, 0). 

Expansion in of (0, 0) gives 

𝑥1 = 𝑥2, 𝑥2 = −𝑥1 + 𝑕𝑖𝑔𝑕𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚 and that in the nbd of (±𝜋, 0) gives 

𝑥1 = 𝑥2, 𝑥2 = −𝑥1 ∓ 𝜋 + 𝑕𝑒𝑖𝑔𝑕𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚. 

Example 11.6: 

Consider the system describing the interacting of the two species 

𝑥  = 𝑎𝑥 − 𝑏𝑥𝑦 

𝑦 = 𝑏𝑥𝑦 − 𝑐𝑦 

With x, y ≥ 0 

And a, b, c are constants. 

„x‟ denotes the population density of the prey „y‟ the population density of the predator. 

In this model the survival of the predator depends completely on the presence of prey; to put 

mathematically if x(0) = 0, we have 𝑦 = −𝑐𝑦so that y(t) = y(0) 𝑒−𝑒𝑡  and 

lim
𝑡→∞ 

y(t)  =  0 

The equilibrium solution corresponds with the critical points (0,0) and (
𝑐

𝑏
,
𝑎

𝑏
) is 

𝑥  = −𝑐(𝑦 −
𝑎

𝑏
)+….. 

𝑦  = −𝑎(𝑥 −
𝑐

𝑏
)+….. 

1.7Periodic Solutions: 

Suppose that 𝑥 = 𝜑  (𝑡) is the solution of the equation 𝑥  = 𝑓 (𝑥 ), 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛  and suppose that 

there exists a positive number T such that 𝜑   𝑡 + 𝑇 = 𝜑  (𝑡) for all t ∈ 𝑅. 

Then 𝜑  (𝑡) is called periodic solution of the equation with period T. if 𝜑  (𝑡) has period T, then 

the solution has also period 2T, 3T, ……..Suppose T is the smallest period, then we called 

𝜑  (𝑡), T-periodic. 

Lemma 11.1: 

 The periodic solution of the autonomous equation 𝑥  = 𝑓 (𝑥 ), 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , t ∈ R, 

corresponding with a closed orbit corresponds with a periodic solution. 
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 Consider the phase space corresponding with 𝑥 = 𝑓 (𝑥 ). For a periodic solution we 

have that often time T, 𝑥 = 𝜑   𝑡 , assume the same value in 𝑅𝑛 . So, a periodic solution 

products a closed orbit or cycle in phase space. 

 Consider now a closed orbit C in phase space and a point 𝑥 0 ∈ 𝐶. The solution of the 

equation 𝑥 = 𝑓 (𝑥 ) given by 𝜑   𝑡 = 0   stands at t=0 in 𝑥 0 and the traces the orbit C because of 

uniqueness of solutions, C can not contain a critical point, so  𝑓 (𝑥 ) ≥ 𝑎 > 0 for 𝑥 ∈ 𝐶. 

Therefore,  𝑥  ≥ 𝑎 > 0 

 

 

So that at a certain time t=T, we have returned to 𝑥 0. Now we have to show that 𝜑   𝑡 + 𝑇 =

𝜑   𝑡  for all t∈ 𝑅. 

Let t = nT+𝑡1 with n∈ 𝑍, 0 <𝑡1< T. 

It follows from the translation property (see article 1.5) 𝜑   𝑡  is a solution 𝜑   𝑡 = 𝑥 1 then 

𝜑   𝑡 − 𝑛𝑇  is a solution with 𝜑   𝑡 + 𝑛𝑇 =𝑥 1 

So, 𝜑   𝑡1  = 𝜑   𝑡1 + 𝑛𝑇  

and as 𝑡1 can have any value between (0, T), we see that 𝜑   𝑡  is T-periodic. 

Example-11.7: 

For the equation 𝑥 + sin 𝑥 = 0, 

The phase plane contains a family of closed orbits corresponding with periodic solutions. 

Example-11.8: 

For the Vander Pol equation  

𝑥 + 𝜇 𝑥2 − 1 𝑥 + 𝑥 = 0, 𝜇 > 0 

The phase plane contains one closed orbit corresponding with periodic solution. 

Note:The definition of periodic solution also applies to solutions of non-autonomous 

equations 𝑥  = 𝑓 (𝑥 , t). However, closed orbits in such a system do not necessarily corresponds 

with periodic solution property is not valid any more. 

Consider for example the system 

 

 
𝑦 = −2𝑡𝑥 

𝑥 = 2 + 𝑦 

where solutions on of the form 

x (t) = 𝛼 cos 𝑡2 + 𝛽 sin 𝑡2 

Proof: 
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y(t) = −𝛼 sin 𝑡2 + 𝛽 cos 𝑡2 

In the xy-phase plane we have closed orbits, but the solutions are not periodic. 

1.8 Orbital Derivative: 

Consider the differentiable function 𝐹 : 𝑅𝑛 → 𝑅 and the vector function 𝑥 : 𝑅 → 𝑅𝑛 . The 𝐿𝑡  of 

the function 𝐹  alone the vector function 𝑥 , parameterise by t is  

𝐿𝑡𝐹  = 
𝜕𝐹 

𝜕𝑥 
𝑥   

        = 
𝜕𝐹 

𝜕𝑥1     
𝑥1  + 

𝜕𝐹 

𝜕𝑥2     
𝑥2  +… + 

𝜕𝐹 

𝜕𝑥𝑛      
𝑥𝑛  

where 𝑥1, 𝑥2, … , 𝑥𝑛  are the components of 𝑥 . 𝐿𝑡  is called the orbital derivatives. 

 Now we chose for 𝑥 -solution of the differential equations 𝑥  = 𝑓 (𝑥 ) to compute the 

orbital derivative. 

First Integrals and Integral Manifolds: Consider the equation 𝑥  = 𝑓 (𝑥 ), 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , the 

function 𝐹 (𝑥 ) is called the first integral if D holds 𝐿𝑡𝐹  = 0.    

It follows from the definition that the first integral 𝐹 (𝑥 ) is constant alone a solution. 

First integral are same times called constant of motion. 

Taking 𝐹 (𝑥 ) = constant, we are considering the level sets contains orbits of the 

equation such a level set defined by 𝐹 (𝑥 ) = Constant consists of family of orbits called an 

integral manifold. 

As for an example consider the equation 𝑥 + 𝑥 = 0. 

The first integral is 

1

2
𝑥2 +

1

2
𝑥2 = 𝐸,   𝐸 ≥ 0

 
,a constant determined by the initial conditions. In phase 

space, this relation corresponds for E>0 with manifold, a circle around the origin. 

Definition: 

Invariant Set: Consider the equation 𝑥  = 𝑓 (𝑥 ), 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 . The set M⊂ 𝐷 is invariant if the 

solution 𝑥 (𝑡) with 𝑥 (0)  ∈ M for −∞ < 𝑡 < ∞. If this property is valid only for t ≥ 0(≤ 0) 

then M is called a positive (a negative) invariant set. 

 Critical points and in general solutions which exists for all time are examples of 

invariant sets. 

Non Degenerate Critical Point of 𝑭   (𝒙   ): Consider 𝐹 : 𝑅𝑛 → 𝑅 which is supposed to be 𝐶∞ , 

for 𝑥  = 𝑎  we have 
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𝜕𝐹 

𝜕𝑥 
 
𝑥  = 𝑎  

 = 0   and 𝑥  = 𝑎  is a critical point. 

The point 𝑥  = 𝑎  is called non-degenerate critical point of the function 𝐹 (𝑥 ) if we have 

the determinant 

 
𝜕2𝐹 

𝜕𝑥2     
 

𝑥  = 𝑎  

≠ 0. 

for example the origin is non-degenerate critical point of the functions 𝑥1
2 + 𝑥2

2, 𝑥1
2 − 2𝑥2

2and 

the origin is a degenerate critical point of the functions  𝑥1
2𝑥2

2 , 𝑥1
2 + 𝑥2

3. 

Definition: 

Morse Function: If 𝑥  = 𝑎  is non-degenerate critical point of the 𝐶∞  function in the 

neighbourhood of 𝑥  = 𝑎 . 

 It is to be noted that the behaviour of a Morse function in a nbd of critical point 𝑥  = 𝑎  

is determined by the quadratic part of the Taylor expression of the function. Suppose that 𝑥  = 

0   is a non-degenerate critical point of the Morse function 𝐹 (𝑥 ) with  

𝐹 (𝑥 ) =  𝐹0
    − 𝑐1𝑥1

2 − 𝑐2𝑥2
2 − ⋯ − 𝑐𝑘𝑥𝑘

2 +  𝑐𝑘+1𝑥𝑘+1
2 + ⋯ + 𝑐𝑛𝑥𝑛

2+ higher order terms. 

 with the coefficients 𝑐1, 𝑐2, … , 𝑐𝑛 ; k is called the index of the critical points. There exists a 

transformation 𝑥 → 𝑦  in a nbd of the critical point such that 𝐹 (𝑥 ) → 𝐺 (𝑦 ) where 𝐺 (𝑦 ) is also 

Morse function with critical point 𝑦 = 0, the same index k and apart from 𝐺 (0  ) only 

quadratic terms. 

Lemma: 

 Consider the function 𝐹 : 𝑅𝑛 → 𝑅 with non-degenerate critical point 𝑥  = 0  , index k. In 

a nbd of 𝑥  = 0   there exists a diffeomorphism (transformation which is one-to-one, unique 𝐶 ′  

and which the inverse exists and is also 𝐶 ′  ) which transforms 𝐹 (𝑥 )to the form 

𝐺  𝑦  = 𝐺  0   − 𝑦1
2 − 𝑦2 

2 − ⋯𝑦𝑘 
2 + 𝑦𝑘+1 

2 + ⋯𝑦𝑛 
2  

11.9Evaluation of Volume Element: 

 Consider the equation 𝑥  = 𝑓 (𝑥 ) in 𝑅𝑛  and a domain D(0) in 𝑅𝑛  which is suppose to 

have volume v(0). The flow defines a mapping 𝑔  of D(0) into 𝑅𝑛 , 

 𝑔 : 𝑅𝑛 → 𝑅𝑛 , 𝐷𝑡 = 𝑔𝑡𝐷(0) 

From the volume v(t) of the domain D(t) we have 

𝑑𝑣

𝑑𝑡
]t=0 =  ∇   . 𝑓 𝑑𝑥  (∇   . 𝑓 =  

𝜕𝑓1

𝜕𝑥1
+

𝜕𝑓2

𝜕𝑥2
+ ⋯ +

𝜕𝑓𝑛

𝜕𝑥𝑛
) 
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11.10 Characterization of Critical Points: 

 In section (11.6) we have seen that linearization in a nbd of a critical point of an 

autonomous system 𝑥  = 𝑓 (𝑥 ) leads to the equations 

𝜉 
 
= 𝐴𝜉     ………………(11.13) 

 where A is a constant nxn matrix; in this formulation the critical point has been translated to 

the origin. We assume that  𝐴 ≠ 0 and critical point is non-degenerate. 

 The eigen values of A are obtained from the characteristic equations 

 𝐴 − 𝜆𝐼 = 0……………….(11.14) 

Let the eigen values are 𝜆1 , 𝜆2 , … , 𝜆𝑛 . In the eigen values are different then there 

exists a real, non-singular matrix T such that 𝑇−1𝐴𝑇 is a diagonal matrix whose diagonal 

elements are the eigen values. If there are some equal eigen values, the linear transformation 

𝜉 = 𝑇𝑧  leads to  

    T𝑧  = 𝐴𝑇𝑧  

i.e𝑧  = 𝑇−1𝐴𝑇𝑧  ……………………….(11.15) 

which can be integrated from which 𝜉 = 𝑇𝑧  follows. 

Two Dimensional Linear System:  

 We shall give the location of the eigen values by the diagram which consists of the 

complex plane (real axis horizontally, imaginary axis vertically), where the eigen value are 

indicated by dots. 

Here the dimension is two and eigen values 𝜆1 𝑎𝑛𝑑 𝜆2  are both real or complex 

conjugate. If 𝜆1 ≠ 𝜆2 (real or conjugate). Then 𝑇−1𝐴𝑇 is of the form  
𝜆1 0
0 𝜆2 

 . 

We find for Z(t) the general solution 𝑍 (𝑡)= (
𝑐1𝑒

𝜆1 𝑡

𝑐2𝑒
𝜆2 𝑡

) …………..(11.16) 

Where 𝑐1 𝑎𝑛𝑑 𝑐2 are arbitrary constant. The behaviour of the solutions represented by (11.16) 

is for the kind of choices of 𝜆1 𝑎𝑛𝑑 𝜆2 very different. We have the following case 

(a) Two Node (𝝀𝟏 𝒂𝒏𝒅 𝝀𝟐 Real and Same Sign): 

 The eigen value are real and have the same sign. If 𝜆1 ≠  𝜆2  we have with 𝑍 (𝑡)=(𝑧1,

𝑧2) the real solution 𝑧1 𝑡 = 𝑐1𝑒
𝜆1 𝑡  and 𝑧2 𝑡 = 𝑐2𝑒

𝜆2 𝑡 . Elimination of t produces  𝑧1  = c 

 𝑧1 
𝜆1 
𝜆2  with c being constant. So in the phase-plane we find orbits which are related to 

parabola. 
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 We call this critical point is a node. If 𝜆1 , 𝜆2 < 0 then (0,0) is a positive attractor and 

a stable node; if 𝜆1 , 𝜆2 > 0, then (0,0) is a negative attractor and a unstable node. If 𝜆1 =

 𝜆2 = 𝛌 (say) the normal form is  
λ 0
0 λ 

   so that 𝑧1 𝑡 = (𝑐1 + 𝑐2)𝑒λ𝑡  and 𝑧2 𝑡 = 𝑐2𝑒
λ𝑡 . 

Here the critical point is called inflected node, a positive attractor if 𝛌<0 (stable) and a 

negative attractor (unstable) if 𝛌>0. 

If particular, if one root, say 𝜆2 is zero then the solution describes a family of 

straight lines through the origin, positive attractor if 𝜆1 < 0(stable) and negative 

attractor if  𝜆1 > 0(unstable). The critical point is called a proper node or star. 

 

 

(b) The Saddle Point(𝝀𝟏 𝒂𝒏𝒅 𝝀𝟐 Real and Opposite Sign): 

The solutions in this case are again of the form given by the equation(11.16). In 

the phase-plane the orbits are given by 

𝑧1 𝑡 = 𝑐1𝑒
𝜆1 𝑡  

 𝑧1  = c  𝑧1 
− 

𝜆1 
𝜆2 

 
     with constant. 

The behaviour of the orbits is hyperbolic, the critical point (0, 0) is not an attractor. We 

call this a saddle point (unstable). It should be noted that the co-ordinate axes correspond 

with five different solutions. The critical point (0, 0) and four half axes. 
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(c) The Spiral or Focus (𝝀𝟏 𝒂𝒏𝒅 𝝀𝟐  Complex Conjugate With Non-Zero Real Part): 

Let 𝜆1 , 𝜆2 = u + i v with u, v ≠ 0. The solutions are of the form 𝑒 u + i v  𝑡 . Linear 

Combination of the complex solutions of the form 𝑒𝜇𝑡 cos𝜔𝑡 and 𝑒𝜇𝑡 sin𝜔𝑡. The orbits are 

spiralling in or out with respect to (0, 0) and we call the critical point a spiral or focus. If 

𝜇 < 0, the critical point is positive attractor (stable), if  𝜇 > 0, the critical point is a negative 

attractor (unstable). 

 

 
 

(d) The Centre (𝝀𝟏 𝒂𝒏𝒅 𝝀𝟐  are Purely Imaginary): 

Let 𝜆1 , 𝜆2 =±i𝜔 with 𝜔 ≠ 0 being real. Then (0, 0) is called a centre (stable). The 

solution can be written as combination of cos𝜔𝑡 and sin𝜔𝑡. The orbits in the phase-plane are 

circle. It is clear that (0, 0) is not an attractor. 
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Critical Points of Non-Linear Equations: 

 Until now we have analysed critical points of autonomous equations 𝑥  = 𝑓 (𝑥 ) by linear 

analysis. We assume that the critical point has been translated to 𝑥 = 0   and that we can write 

the equation of the form 

 𝑥  = 𝐴𝑥 + 𝑕  (𝑥)       ………………….(11.17) 

with a non-singular nxn matrix and that 

 lim 𝑥  →0
 𝑕   (𝑥)      

 𝑥  
= 0 

 The nature of the singularity of the critical point of the non-linear system (11.17) is 

given by the following theorem of Poincare which we state without proof. 

Theorem 1.3(Poincare Theorem): 

 If the critical point 𝑥 = 0   of the linear system 𝑥  = 𝐴𝑥  be a node, saddle point or a 

spiral, then the critical point of non-linear system (11.17) is of same type. On the other hand, 

if the linear approximation has an inflected node or a proper node at 𝑥 = 0  , then the non-

linear system can have either a node or a spiral, and if the linear approximation has a centre at 

𝑥 = 0  , the non-linear system can have either a centre or a spiral. 

Example 11.9: Locate the critical point of the non-linear system 

𝑥 = −6𝑦 + 2𝑥𝑦 − 8 

𝑦 = 𝑦2 − 𝑥2 

and classify them according to their linear approximation. 

Solution:For the critical point we have 

−6𝑦 + 2𝑥𝑦 − 8 = 0 

𝑦2 − 𝑥2 = 0 

                                                   i.e., y = ±𝑥. 

When y = x ⇒ −6𝑦 + 2𝑥2 − 8 = 0 ⇒ x = 4, 1 and y = 4, −1. 

The critical point are (4, 1) and (4, −1). 

When y = −x ⇒ 6𝑥 − 2𝑥2 − 8 = 0 ⇒ x = 
3±𝑖 7

2
 

Which are complex and therefore it is omitted. 
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            x = ξ + 4 and y = 𝜂 + 4 

Therefore the given system gives 

ξ  = −6 𝜂 + 4 2 + 2 ξ +  4 (𝜂 + 4)−8 

and  𝜂  =  𝜂 + 4 2 −  ξ +  4 2 

i.e.,ξ = 8ξ + 2𝜂 + 2ξ𝜂 

 𝜂 = −8ξ + 8𝜂 − ξ2 + 𝜂2 

Linear approximation is  

 .   ξ = 8ξ + 2𝜂  

𝜂 = −8ξ + 8𝜂 

∴ 𝐴 =   
8 2
−8 8

  

The characteristic equation is  
8 − 𝜆 2
−8 8 − 𝜆

 = 0 

⇒ 𝜆2 − 16𝜆 + 80 = 0 

⇒ 𝜆 = 8 ± 4𝑖 

 Since the eigen values are complex conjugate with non-zero real part, so the 

critical point is an unstable spiral and negative attractor. Thus the Poincare Theorem, 

the critical point of the given non-linear system is of same type. 

For the critical point (−1, −1), we put  

x = ξ−1 and y = 𝜂 − 1 

The given system gives  

ξ = −6 𝜂 − 1 + 2 ξ − 1  𝜂 − 1 − 8 

𝜂 =  𝜂 − 1 2 −  ξ − 1 2 

i.e., ξ = −2ξ−8 𝜂+2ξ𝜂 

𝜂 = 2ξ − 2𝜂 − ξ2 + 𝜂2 

Linear approximation is 

ξ = −2ξ − 8𝜂 

𝜂 = 2ξ − 2𝜂 

For the critical point (4, 4), we put  
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The characteristic equation is  

  
−2 − 𝜆 −8

2 −2 − 𝜆
 = 0 ⇒ 𝜆 = −2 ± 4𝑖 

Since the given eigen values are complex conjugate with non-zero negative real part 

so that the critical point is stable spiral. Thus by Poincare theorem, the critical point 

(-1, -1) of the given non-linear is of the same type. 

Exercises: 

Exercise-1: 

Locate the critical points and find their nature for the following non-linear system: 

a) 𝑥 = −2𝑥 − 𝑦 + 2, 𝑦 = 𝑥𝑦; (1, 0) saddle point, (0, 2) saddle points. 

b) 𝑥 =4−4𝑥2 − 𝑦2, 𝑦 = 𝑥𝑦; (0, ±2) centre, (±1, 0) saddle points. 

c) 𝑥 = 𝑠𝑖𝑛𝑦, 𝑦 = 𝑥 + 𝑥2; (0, n𝜋), saddle points if n is even and centres if n is odd. 

d) 𝑥 = 𝑥2 − 𝑦, 𝑦 = 𝑥 − 𝑦; (1, 1) saddle points and (0, 0) stable spiral. 

Exercise-2:For the equation of motion of the damped pendulum 𝑥 +
𝑐

𝑚
𝑥 +

𝑔

𝑎
sin 𝑥 = 0(𝑚 > 0, 𝑐 > 0) investigate the nature of  critical point. 

Solution: Let 𝑥 = 𝑦, so that 𝑦 = −
𝑐

𝑚
𝑦 −

𝑔

𝑎
𝑠𝑖𝑛𝑥 

                           = −
𝑔

𝑎
x −

𝑐

𝑚
𝑦 +

𝑔

𝑎
(𝑥 − 𝑠𝑖𝑛𝑥) 

Now
 𝑥−𝑠𝑖𝑛𝑥  

 𝒙𝟐+𝒚𝟐
 ≤  

 𝑥−𝑠𝑖𝑛𝑥  

 𝒙 
=   𝟏 −

𝒔𝒊𝒏 𝒙

𝒂
 → 0 as (x, y) → (0, 0) 

Linear approximation is  

 𝑥 = 𝑦, 𝑦 =  −
𝑔

𝑎
x –

𝑐

𝑚
𝑦. 

(0, 0)  is the critical point. 

The characteristic matrix is  

A=  
0 1

−𝑔/𝑎 −𝑐/𝑚
  

The characteristic equation is  

 
𝜆 1

−
𝑔

𝑎
−

𝑐

𝑚
− 𝜆

 = 0. 

⇒ λ =  
 ac  ±  ac2 − 4gm2

2m a
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Critical point is a stable node (the attractor), if ac2 > 4gm2, stable spiral(the attractor) if  

ac2 < 4gm2and inflected node( the attractor) if ac2 = 4gm2. 

Exercise-3: Investigate the nature of the critical point for the Van der Pol equation 

𝑥 + 𝜇 𝑥2 − 1 𝑥 + 𝑥 = 0 for the cases 𝜇 > 0 and 𝜇 < 0. 

Hint: 0 <2< 𝜇; node with −𝑣𝑒 attractor. 

−2< 𝜇 < 0; node with +𝑣𝑒 attractor. 

0< 𝜇 < 2; spiral with −𝑣𝑒 attractor. 

 𝜇 < −2 < 0; spiral with +𝑣𝑒 attractor. 

Exercise-4: Determine the critical point and there nature for the system 𝑥 + 𝛼𝑠𝑖𝑛𝑥 = 0, 

where 𝛼 is constant. 

Hint: Critical points are (n𝜋, 0). 

For 𝛼 > 0, saddle point if n is even and centres and spirals if n is odd. For 𝛼 < 0, centres 

and spiral if n is even and saddle points if n is odd. 
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UNIT-12 

 

Non-linear Conservative System:Nonlinear oscillators-conservative system. 

Hamiltonian system. Various types of oscillators in nonlinear system viz. simple pendulum, 

and rotating pendulum. 

 

12.1 Conservative Systems: 

 Let us consider a system with one degree of freedom and let x be a generalised co-

ordinate (e. g. position, angle etc.). Let T and V be the K.E and potential energy function and 

assume that they have the form  

 T = 
1

2
𝑚 𝑥 𝑥 2, 𝑣 = 𝑣(𝑥)…………………(12.1) 

where m(x)(>0) is another function of x. If the system is conservative, the total energy ξ is 

constant during motion. 

i.e., 
1

2
𝑚 𝑥 𝑥 2 +  𝑣 𝑥 =ξ, a constant…………………. 12.2) 

which gives the phase paths. 

 The type of equation which leads to (12.2) can be obtain by taking the time 

derivative of (12.2)as follows 

m(x)𝑥 +
1

2
𝑚′ 𝑥 𝑥 2 +  𝑣′  𝑥 = 0……………….(12.3) 

which can be simplified by introducing a new variable u in a place of x by 

 u =   𝑚(𝑥) dx 

∴ 𝑢 =  𝑚(𝑥)𝑥  

and 𝑢 =  
1

2

𝑚 ′  𝑥 

 𝑚(𝑥)
𝑥 2 +   𝑚(𝑥)𝑥  

          = 
 m(x)𝑥 +

1

2
𝑚 ′  𝑥 𝑥 2

 𝑚(𝑥)
  = −

𝑣 ′  𝑥 

 𝑚(𝑥)
 .     ……………..(12.4) 
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Equation (12.3) then becomes 𝑢 + 𝑓 𝑢 = 0 and corresponding energy type equation for the 

phase path is  

 
1

2
+ 𝑢 2 +  𝑓 𝑢 𝑑𝑢 = 𝑐 ……………..……(12.5) 

in which 𝑓 𝑢 =
𝑣 ′  𝑥 

 𝑚(𝑥)
 

 

Example 12.1 

 Show that the equations of the form  𝑥 + 𝑔 𝑥 𝑥 2 + 𝑕 𝑥 = 0 are affect ably 

conservative. Find a transformation which puts the equation into the conservative form. 

Solution: 

 Let u = u(x) 

∴ 𝑢 = 𝑢′𝑥 ⇒ 𝑥 =
𝑢 

𝑢′
 

Also 𝑢 = 𝑢″ 𝑥 2 + 𝑢′𝑥 =  𝑢″ 𝑢 2

𝑢 ′ 2  + 𝑢′𝑥  

∴ 𝑥 =
𝑢  𝑢′2 − 𝑢″ 𝑢 2

𝑢 3
 

 Hence the given equation is transformed into 

 
𝑢  𝑢 ′ 2−𝑢 ″ 𝑢 2

𝑢 3
 + g(x)

𝑢 2

𝑢 ′ 2 +h(x) = 0. 

or, 
𝑢 

𝑢 ′ + {𝑔 𝑥 −
𝑢 ″

𝑢 ′ } 
𝑢 2

𝑢 ′ 2+h(x) = 0. 

We choose g(x) = 
𝑢 ″

𝑢 ′ and then the above equation transformed into 𝑢 + 𝑔 𝑥 𝑢′ = 0 i.e., 

𝑢 + 𝑓 𝑢 = 0. 

 Since g(x) = 
𝑢 ″

𝑢 ′  , we have 

log 𝑢′ =   𝑔(𝑥)𝑑𝑥 

or 𝑢′ =  𝑒 𝑔(𝑥)𝑑𝑥  

∴ 𝑢 =   {𝑒 𝑔(𝑥)𝑑𝑥 }𝑑𝑥 
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Examples of Non-Linear Conservative System with one Degree of Freedom: 

i) Simple Pendulum:The motion of simple pendulum of length l, mass m is given 

by  

                   ml𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 0. 

i.e., 𝜃 + 𝜔0
2𝑠𝑖𝑛𝜃 = 0  𝑤𝑕𝑒𝑟𝑒 𝜔0

2 =
𝑔

𝑙
           ………………(12.6A) 

Here the non-linearity is due to large motion corresponding to large deformation. 

 
ii) Particle Restrained by Non-Linear Spring:Consider the motion of the particle 

of mass m on a horizontal frictionless plane and restrained by the non-linear 

spring. If x(t) be the position of the mass then the differential equation is  

m𝑥 = −𝑓(𝑥)   …………………………..(12.6B) 

where f(x) is the force exerted by the spring on the mass and the force is the non-

linear function of the displacement. Here the non-linearity is due to the material 

behaviour. 

iii) Particle in a Central Force Field: The equation of motion of the particle moving 

in a plane under a central force field F(r) is 

𝑑2𝑢

𝑑𝜃2 + 𝑢 =  
𝐹(1/𝑢)

𝑕2𝑢2   , where u = 1/r ……………….(12.6C) 

 where the field is gravitational and electrical. Here the non-linearity is due to                              

inertia as well as material property. 

iv) Rotating Pendulum(A Particle Rotating in a Circle): Consider the motion of 

the particle of mass m moving without friction alone a circle of radius a which 

rotates with angular velocity Ω about its vertical diameter. The forces acting on 

the particle are the gravitational force mg, the centrifugal force mΩ2𝑎𝑠𝑖𝑛𝜃 and 

reaction force M(say). Taking the moment about the centre O of the circle and 

equating their some to the rate of change of angular momentum of the particle 

about O we get 

        m𝑎2𝜃 =  mΩ2𝑎𝑠𝑖𝑛𝜃. a cosθ − mgasinθ 

i.e., 𝜃 +  
𝑔

𝑎
𝑠𝑖𝑛𝜃 − Ω2𝑠𝑖𝑛𝜃. cosθ = 0 …………………(12.6D) 
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Here the non-linearity is due to inertia as well as large deformation. It is seen from 

the above that all the equations in (12.6) are of the form 𝑥 + 𝑓 𝑥 = 0. 

 

 

12.2 Energy Integral: 

 Consider the differential equation 

𝑥 + 𝑓 𝑥 = 0  ………………………(12.7A) 

𝑓𝑜𝑟 non-linear conservative systems with one degree of freedom. The equivalent system is                                

𝑥 = 𝑦 𝑎𝑛𝑑 𝑦 =  −𝑓(𝑥) …………(12.7B) 

and the integral curve is  

 
𝑑𝑦

𝑑𝑥
=  

−𝑓(𝑥)

𝑦
     ………………………….(12.8) 

which shows that the integral curves have a horizontal tangent at the points 𝑥𝑖 , the roots of a 

equation f(x)=0, provided y ≠ 0 at this points. For critical points we have simultaneously f(x) 

= 0, y=0 i.e., the critical points (if exists) lie on the x-axis. 

The energy integral is  

1

2
𝑦2 + 𝑣 𝑥 = 𝜉, 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   𝑤𝑕𝑒𝑟𝑒 𝑣 𝑥 =  𝑓(𝑥)𝑑𝑥

𝑥

0
   ………………………(12.9) 

 We can consider 
1

2
𝑦2 =

1

2
𝑥 2 as the K.E and v(x) as the potential energy; the 

constant𝜉, the total energy shows that the system is conservative. The constant 𝜉 is 

determined by the initial conditions and is called the energy integral. For a given value of 𝜉 

the solution (12.9) represents on the phase plane (xy-plane)a curve which we call integral 

curve or a level curve or a curve of constant energy. 

 The behaviours of the level curves are called trajectories. As time passes, the point of 

the phase plane representing the solution move alone the trajectories. The direction of sence 

of the motion of the point can be determined by considering the velocity y(=𝑥 ). Clearly, x 

must be increasing function of time if y > 0. 
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 We re-write (12.9) in the form 

y = ± 2{𝜉 − 𝑣 𝑥 } …………………(12.10) 

and note that the real solution for y exists if and only if 𝜉 ≥ 𝑣(𝑥) and that the trajectories are 

symmetric about the x-axis. It is seen from (12.8) that the slopes are uniquely determined 

everywhere in xy-plane except at the critical points where both the acceleration (=f(x)) and 

the velocity are zero. The trajectories in the phase plane can not intersect any where except at 

the critical points. 

 Now, we determined the form of trajectories for varies forms of the function v(x). 

 

Case-1:The function v(x) has a maximum: 

 We consider the case when the energy v(x) has a maximum. When the energy level 𝜉0 

each level curve consists of two branches which intersect the x-axis and are similar in shape 

two branches in hyperbola, one opening to the right and the other opening to the left. When 

𝜉 > 𝜉0 each level curve consists of two branches, but in this case they do not intersect the x-

axis. When 𝜉 = 𝜉0, the level curve consists in four branches that meet at branches passing 

through the saddle point are called the separatrices. None of the other separatrices passes 

through S and the separatrices are asymptotes to all other trajectories. The critical point S is 

unstable because any disturbances and more form S and it tends to infinity. 

 And the infinite amount of time is required by the particle to pass alone a separatrix 

point to the point itself and this can be seen as follows 

We have from (12.10) 

𝑥 = ± 2{𝜉0 − 𝑣 𝑥 }……………….(12.10A) 

Let u = x−𝑥0 which 𝑥0 is the location of the saddle point. Then the nbd of 𝑥0 we have 

𝜉0 − 𝑣 𝑥 = 𝜉0 − 𝑣(𝑥0) 

⇒𝜉0 − 𝑣 𝑥 = 𝜉0 − 𝑣 𝑥0 − 𝑢𝑣′  𝑥0 −
1

2
𝑢2𝑣″  𝑥0 + 𝑂 𝑢3  

                          = −
1

2
𝑢2𝑣″ 𝑥0 + 𝑂 𝑢3  (Since 𝑣 𝑥0 = 𝜉0  𝑎𝑛𝑑 𝑣 ′ 𝑥0 = 0) 

 Substituting this in (2.10A) and integrating we get the time required to move 

from 𝑢1 = 𝑥1 − 𝑥0 to u = x−𝑥0 as t = − −𝑣″  𝑥0  
−

1

2 log  
𝑢

𝑢1
 (𝑥1 > 𝑥0). Since 𝑣(𝑥) is 

maximum at 𝑥0, 𝑠𝑜 𝑢 → 0 i.e., 𝑥 → 𝑥0 𝑎𝑠 𝑡 → ∞. 
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Case-II: The function 𝒗(𝒙) has a minimum:  

 

Suppose v(x) has a minimum at 𝑥 = 𝑥0. When 𝜉 = 𝜉0, the level curve degeneartes 

into a single critical point C which is a centre. When 𝜉 < 𝜉0, there is no real solution, but 

when 𝜉 > 𝜉0, each level curve consists of a single closed trajectories surrounding the point C. 

the critical point C is stable because a small disturbance will a result in a closed trajectories 

that surrounded C alone which the state of the system remains closed to C, the motion 

corresponding the closed curves are periodic but need not be harmonic. The period T of the 

non-linear system is a function of amplitude 𝜉0. It can be seen from (12.10A) that  

 T =  [2 𝜉0 − 𝑣 𝑥  −
1

2]𝑑𝑥
𝑥2

𝑥1
    ………………….(12.11) 

Near the critical point 𝑥0, we have by putting u = x−𝑥0 

𝜉0 − 𝑣 𝑥 = 𝜉0 − 𝑣 𝑢 + 𝑥0 = −
1

2
𝑢2𝑣″  𝑥0 + 𝑂 𝑢3  

If the motion is small, then the neglecting the higher order terms in u, the equation of 

motion 𝑥 + 𝑓 𝑥 = 0, 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

𝑥 + 𝑣 ′ 𝑥 = 0 

or,𝑢 +
1

2
𝑣″  𝑥0 . 2𝑢 

𝑑𝑢

𝑑𝑥
= 0. 

  or, 𝑢 + 𝑣″  𝑥0 . 𝑢 = 0 

whose solution is  

u = 𝑐1exp⁡{ −𝑣″  𝑥0   t} + 𝑐2 exp{− −𝑣″  𝑥0   t} 

where 𝑐1 and 𝑐2 are constsnts. 

Near a centre 𝑣″  𝑥0 > 0 and so the centre is oscillatory described by circular functions 

and so it is stable. 
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Case-III: The function v(x) has a point of inflection at 𝒙𝟎(𝒗′ 𝒙 = 𝟎, 𝒗″  𝒙𝟎  = 𝟎): 

 Suppose the maximum and minimum point to form a point of inflection. Each 

level curve consists of one branch that open to the left. The level curve 𝜉 = 𝜉0  passes 

through critical point P which is unstable. The point corresponds to a cusp of the phase 

plane which can be seen as follows. 

At the point P, v(x)=0, 𝑣′  𝑥 = 0, 𝑣″  𝑥0  = 0. 

∴ 𝑦 = 0, since 𝑦 =
𝑑𝑦

𝑑𝑥

𝑑𝑥

𝑑𝑡
=  𝑥 

𝑑𝑦

𝑑𝑥
= 𝑦

𝑑𝑦

𝑑𝑥
= −𝑓 𝑥 = −𝑣′  𝑥 = 0 

∴  
𝑑𝑦

𝑑𝑥
 

2

+ 𝑦
𝑑2𝑦

𝑑𝑥2
= −𝑓′ 𝑥 = −𝑣″  𝑥 = 0. 

At x = 𝑥0, y =
𝑑𝑦

𝑑𝑥
= 0. 

 

Note:  

 If v(x) or 𝑣 ′ 𝑥  is given, we can determine whether the critical point is a saddle 

point or a centre by examining the second derivative. At the saddle point 𝑣″  𝑥 =

𝑓′ 𝑥 < 0 and at a centre 𝑣″  𝑥 = 𝑓′  𝑥 < 0. 

 For example, consider a equation  

𝑥 +  1 − 𝑥  2 − 𝑥 = 0. 

The critical points are at x = 1 and x = 2. 

Now,          f(x) =  1 − 𝑥  2 − 𝑥  

∴ 𝑓′ 𝑥 = 2𝑥 − 3 

𝑓′ 1 = −1 < 0 𝑎𝑛𝑑 𝑓′  2 = 1 > 0 

Therefore, x = 1 is a saddle point and  x = 2 is a centre. 

12.3: Parameter Dependent Conservative System: 

 The parameter dependent conservative system is given by the equation 

𝑥 + 𝑓 𝑥, 𝜆 = 0.    …………………………………. 12.12) 

where 𝜆 is a parameter.  The critical point are obtained by the solutions of the equation 

𝑓 𝑥, 𝜆 = 0 and so there location depends on the parameter 𝜆. If the potential energy of 

the system is 𝑉 𝑥, 𝜆  then  

 𝑓 𝑥, 𝜆 =
𝜕𝑉 𝑥,𝜆 

𝜕𝑥
  for each 𝜆.          ………………. 12.13) 

79



 

The critical points corresponds stationary values of the potential energy 

corresponds to a stable critical point and the other stationary values (maximum and the 

point of inflation) to be unstable. Infect V is maximum at x = 𝑥1if 
𝜕𝑉

𝜕𝑥
 changes from 

negative to positive on passing through 𝑥1 i.e., 𝑓 𝑥, 𝜆  changes sign from +𝑣𝑒  𝑡𝑜 − 𝑣𝑒 as 

x increased through 𝑥1. 

 

For example, the solid line between A and B are unstable then C is also unstable, 

since f is +𝑣𝑒 or both sides of C. The nature of the critical point can easily be need from 

the figure, when 𝜆 = 𝜆0 , as shown the system has three critical points two of which are 

unstable and one is stable. The points A, B and C are known as bifurcation. Points of 𝜆. 

As 𝜆 varies to such points, the critical point may split in two or more or several critical 

point may appear or marge into a single one. 

12.4  Non-Linear Oscillation in Conservative System: 

a) Motion of a Simple Pendulum: 

The equation of motion of a simple pendulum of length l is given by  

𝜃 + 𝜔0
2𝑠𝑖𝑛𝜃 = 0.     ……….. 12.14) 

where 𝜃 is the angular deviation from two vertical 𝜔0
2 = 𝑔/𝑙. A first integral is 

𝜃2 = 2[𝜉 − 𝑣(𝜃)] where 𝑣 𝜃 = 𝜔0
2𝑐𝑜𝑠𝜃 and 𝜉, the energy level depends on the initial 

conditions, we take 

2 𝜉 = 𝜃 0
2 − 2𝜔0

2𝑐𝑜𝑠𝜃0………………. 12.15) 

So that 

𝜃2 = 𝜃 0
2 + 2𝜔0 

2  (𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0).     ……………….. 12.16) 

Since v(𝜃) has a minimum −𝜔0
2 at 𝜃 = 0 and at even multiplies of 𝜋, the level 

curves 𝜉 = −𝜔0
2 consists of an infinite number of discrete centre located alone the 

𝜃 − 𝑎𝑥𝑖𝑠. The centres correspond to stable equilibrium position. Moreover v(𝜃) has a 

maximum 𝜔0
2  at odd multiple of  𝜋. 
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 The level curves 𝜉 = 𝜔0
2  consists of two separatrices shown in figure 2.5 that 

meet at an infinite number of saddle points located alone the 𝜃 − 𝑎𝑥𝑖𝑠 at odd multiples 

of 𝜋. The saddle points correspond to an unstable equilibrium position(invented  

pendulum). It follows from (12.15) that the equation describing the separatrices is 

given by 

𝜃2 = 4𝜔0 
2 cos2 𝜃

2
 (putting 𝜉 = 𝜔0

2) 

i.e., 𝜃 = ±2𝜔0 cos
𝜃

2
 

 When −𝜔0
2 < 𝜉 < 𝜔0 

2 , the level curve consists of a infinite number of closed 

trajectories each of which surrounds one of the centres, they correspond periodic 

motion of equilibrium position of pendulum. When 𝜉 > 𝜔0
2  a level curve consists of two 

way of trajectories outside the separatrices which corresponds to rotating or spinning 

motion of the pendulum. 

From (12.16), we get 

t = ±   𝜃0
2 + 2𝜔0 

2  𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0  
−1/2

𝑑
𝜃

𝜃0
𝜃 

For convince, we suppose the motion to be started in the vertical direction 

(𝜃0 = 0) with angular velocity 𝜃 0, then we can write 

t = ±
1

 𝜃 0 
 

𝑑𝜃

 1−𝑘2 sin 2𝜃

2
 

1
2

      ,     𝑤𝑕𝑒𝑟𝑒 𝑘 =  
2𝜔0

 𝜃 0 

𝜃

0
 

The character of the motion varies according to the values k. 

 If k<1 i.e.,  𝜃 0 > 2𝜔0, the integral is always real and the value of 𝜃 increases in 

definitely. In this case 𝜉 > 𝜔0
2  according to (12.15) and the motion is unbounded and 
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the pendulum undergoes spinning rather than oscillation. The separatrices (12.5) are 

between trajectories representing the motion of 𝜃 − 𝑎𝑥𝑖𝑠. 

 If k = 1 i.e.,  𝜃 0 = 2𝜔0, the integrand is real and approaches to infinite as 𝜃 

approaches to 𝜋.Thus the motion carries the pendulum from straight down to straight 

up. However 𝜃 approaches to 𝜋 asymptotically as t approaches to ∞. In this case 𝜉 = 𝜔0
2 

according to (12.15) trajectories representing the motion are of the separatrices. 

 If k>1 i.e.,  𝜃 0 < 2𝜔0, the integrand is real only if  

 𝜃 < 2 sin−1  𝜃 0 

2𝜔0
 =   𝜃𝑚  (𝑠𝑎𝑦)    ……….. 12.18) 

Thus the pendulum oscillate between ±𝜃𝑚  . in this case −𝜔0 
2 < 𝜉 < 𝜔0

2 and the 

closed trajectories represent this motion. Value k = 1 is called bifurcation value because 

if separate values of k for which the trajectories vary qualitatively (from open to 

closed). 

In this case the oscillatory motion the integral (12.17) from zero to 𝜃𝑚  with 

+𝑣𝑒 sign, gives 1/4 th period.  

Thus the period is  

T = 
1

 𝜃 0 
 

𝑑𝜃

 1−𝑘2 sin 2𝜃

2
 

1
2

 , 𝑘 > 1 
𝜃𝑚

0
   ………………………….. 12.19) 

Let, ksin
𝜃

2
 sin𝜑. Then 𝜑 =

𝜋

2
 when 𝜃 = 𝜃𝑚  and kcos

𝜃

2
.
1

2
d𝜃 = cos 𝜑𝑑𝜑 

Then d𝜃 =
2cos  𝜑𝑑𝜑

kcos
𝜃

2

 =  
2𝑘cos  𝜑𝑑𝜑

 1−𝑘2 sin 2 𝜑 
1
2

  where k =
 𝜃 0 

2𝜔0
= sin

𝜃𝑚

2
 

Hence  

 T = 
4

𝜔0
 

𝑑𝜑

 1−𝑘2 sin 2 𝜑 
1
2

𝜋

2
0

       …………………………………….. 12.20) 

This expression for the period is in terms of elliptic function of the first kind 

(complete normal elliptic integral of first kind). 

b) Motion of Rotating Pendulum: 

Consider a pendulum of mass m and length l constrained to oscillate in a plane 

rotating with angular velocity Ω about the vertical line. The moment of centrifugal force 

acting on the pendulum. 

   =m Ω2 asin 𝜃 . acos 𝜃 

 = 𝑚Ω2𝑎2 sin 𝜃 cos 𝜃 
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and that the gravity mgasin 𝜃 

The differential equation of motion is  

𝑚𝑎2𝜃 = 𝑚Ω2𝑎2 sin 𝜃 cos 𝜃 − mga sin 𝜃 

i.e., 𝜃 = Ω2(cos 𝜃 − 𝜆) sin 𝜃      …………………………………… 12.21) 

𝑚𝑘2 is the moment of inertia of mass about the centre. 

𝜆 =
𝑔

𝑎Ω2  , 𝑤𝑕𝑒𝑟𝑒
𝑔

𝑎Ω2 is a parameter and 𝜃 be the angular deviation of the pendulum. 

Thus the conservative system is 

𝜃 + 𝑓 𝜃, 𝜆 = 0 where 𝑓 𝜃, 𝜆 = Ω2(𝜆 − cos 𝜃) sin 𝜃 

The equivalent system is  

𝜃 = 𝜔, 𝜔 = Ω2(𝜆 − cos 𝜃) sin 𝜃    ……………………………….. 12.22) 

The differential equation of integral curves  

𝑑𝜔

𝑑𝜃
=

Ω2(𝜆−cos 𝜃) sin 𝜃

𝜔
  ……………………………. 12.23) 

The critical points are 

𝜃 = 0, ±𝜋, cos−1 𝜆. 

 The corresponding 𝜃, 𝜆 diagram is shown in figure-2.7 with remains in which 

f(𝜃, 𝜆)>0 shown in shading. The stable and unstable critical points of the diagram are 

shown by the closed dots and open dots respectively. The former corresponds to the 

critical point of type centre and later to these the saddle point. 

 
The energy integral in this case is given by 

𝜔2 = Ω2[sin2 𝜃 + 2𝜆 cos 𝜃 + 1 ]       ……………………………….. 12.24) 
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In this equation the energy constant is 𝜉(= Ω2𝜆) has been determined by the 

condition by separatrix passes through the saddle point 𝜃 = ±𝜋, 𝜃 = 0. As there also 

exists a second separatrix corresponding to 𝜃 = 0, 𝜃 = 0 for which the energy constant 

is 𝜉 = −Ω2𝜆. We have the relation 

𝜔2 = Ω2[sin2 𝜃 + 2𝜆 cos 𝜃 − 1 ]       ……………………….. 12.25) 

 

 Fig shows in the phase diagram. The differential equation (12.21) with the 

separatrices the points A(say) to B(say) corresponding to (12.24) and (12.25) 

respectively. 

 It is to be noted that the centre at origin for Ω=0 becomes a saddle point for 

Ω≠ 0 in which case there appear two centres𝑐1 and 𝑐2 symmetrically placed about the 

origin. The periodic motion about the centres(within the integral separatrix B are 

symmetrical). When the energy constant ξ reaches the value corresponding to the 

separetrix B, the motion changes is character and takes place around two centres 𝑐1 and 

𝑐2 and the saddle point S about the origin being still inside the internal separatrix A. in 

this case, the motion is still oscillation with velocity decreasing in the nbd of 𝜃 = 0. If 

the energy constant is further increased and the separetrix A is crossed.  

 If 𝜆 → 0 i.e., Ω→ ∞, the two separatrix A and B approaches each other and the 

centres 𝑐1 and 𝑐2 approach to the point 𝜃 = ±𝜋 respectively. 

 If 𝜆 < 1, the phase diagram changes again there approach to a centre C, but the 

intermediate structure of trajectories disappear.  If 𝜆 = 1 is the critical or bifurcation 

value of the parameter. 

12.5 Hamiltonian Systems in the Plane: 

 A system of differential equations on 𝑅2is said to be Hamiltonian with one 

degree of freedom if it can be expressed in the form 
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𝒅𝒙

𝒅𝒕
=  

𝒅𝑯

𝒅𝒚
 ,

𝒅𝒚

𝒅𝒕
=  −

𝒅𝑯

𝒅𝒙
       ……………………. 12.26) 

where H(x, y) is a twice differentiable function. The system is said to be conservative 

and there is no dissipation. The Hamiltonian is defined by  

H(x, y) = K (x, y) + V (x, y) 

 where K is the kinetic energy and V is the potential energy. 

Theorem 12.1: Conversation of Energy:  

 The total energy H(x, y) is first integral and a constant of the motion. 

Proof:The total derivative alone a trajectories is given by 

dH

dt
=

dH

dx

dx

dt
+

dH

dy

dy

dt
 

 = 
𝒅𝑯

𝒅𝒙

𝒅𝑯

𝒅𝒚
−

𝒅𝑯

𝒅𝒚

𝒅𝑯

𝒅𝒙
 = 0 (by (12.26)) 

Thus H(x, y) is a constant alone the solution curves of (12.26) and the trajectories on 

the Contour‘s are defined by H x, y =c, where c is constant. 

Definition:A critical point of the system 𝑥  = 𝑓 (𝑥 ), 𝑥 ∈ 𝑅2 at which the Jacobian matrix has 

non-zero eigen values is called the non-degenerate critical point, otherwise it is called 

degenerate critical point. 

Theorem-12.2: 

 Any non-degenerate critical point of an analytic Hamiltonian system is either a saddle 

point or a centre. 

Proof: 

 Assume that the critical point is at the origin. The Jacobian matrix is given by 

 

𝐽0 =

 

 
 

𝜕2𝐻(0,0)

𝜕𝑥𝜕𝑦

𝜕2𝐻(0,0)

𝜕𝑦2

−
𝜕2𝐻(0,0)

𝜕𝑥2
−

𝜕2𝐻(0,0)

𝜕𝑥𝜕𝑦  

 
 

 

Now, det𝐽0= 
𝜕2𝐻(0,0)

𝜕𝑥2

𝜕2𝐻(0,0)

𝜕𝑦2 −  
𝜕2𝐻 0,0 

𝜕𝑥𝜕𝑦
 

2

 

The origin is the saddle point if det𝐽0 < 0 and the centre or focus if det 𝐽0 > 0. 
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Note that the critical points of the system (2.26) corresponds to a stationary 

points of the surface z =H(x, y). If the origin is the focus then the origin is not a strict 

local maximum or minimum of the Hamiltonian function. Suppose that the origin is a 

stable focus then 𝐻 𝑥0, 𝑦0 = lim𝑡→∞ 𝐻(𝑥 𝑡, 𝑥0, 𝑦0 , 𝑦(𝑡, 𝑥0, 𝑦0)) = 𝐻(0,0) for all 

(𝑥0, 𝑦0)∈ 𝑁𝜖(0,0)  where 𝑁𝜖(0,0) is a small deleted nbd of the origin. However H(x, 

y)>𝐻(0,0) at the local minimum and H(x, y)<𝐻(0,0) at the local maximum. A similar 

point can be applied when the origin is an unstable focus. 

  Therefore, the non-degenerate critical point is either a saddle point or a centre. 

Example 12.2:Find the Hamiltonian for each of the following systems and sketch, the 

phase path 

a) 𝑥 = 𝑦, 𝑦 = 𝑥 + 𝑥2 

b) 𝑥 = 𝑦 + 𝑥2 − 𝑦2, 𝑦 = −𝑥 − 2𝑥𝑦 

Solution: 

a) Phase path 

J =  
0 1
1 0

 = −1 < 0 

Therefore, (0, 0) is saddle point. 

and J =  
0 1
−1 0

 = 1 > 0 

Therefore, (−1, 0) is centre. 

 

 
b) We have  

𝑑𝑦

 𝑑𝑥
=

𝑦 

𝑥 
=

−𝑥 − 2𝑥𝑦

𝑦 + 𝑥2 − 𝑦2
 

or,𝑦𝑑𝑦 + 𝑥𝑑𝑥 − 𝑦2𝑑𝑦 + 2𝑥𝑦𝑑𝑥 + 𝑥2𝑑𝑦 = 0 

Integrating we have, 

H(x, y)= 
1

2
𝑥2 +

1

2
𝑦2 + 𝑥2𝑦 −

1

3
𝑦3 = Constant. 

 

86



 Critical points are at (0, 0), (
 3

2
, − 

1

2
) and (−

 3

2
, − 

1

2
) which are all non-

degenerate. The critical point at (0, 0) is centre and those are other points are saddle 

points. 

 

Exercises: 

Exercise1: The equation 𝑥 + 𝑘𝑥 + 𝛾𝑥3 = 0, 𝑘 > 0 describes the motion of a hard spring 

if 𝛾 > 0 a soft spring if 𝛾 < 0. 

Hint: 

Case-1: 

If 𝛾 > 0, 

The critical point is (0, 0) which is minimum and it is a centre. 

Case-2: 

If 𝛾 < 0, 

The critical point are at (0, 0) and (± −
𝑘

𝛾
 , 0), (0, 0) is minimum and it is a centre. 

(± −
𝑘

𝛾
 , 0) is maximum and it is saddle point. 

Exercise2: Find the equation of the path 𝑥 − 𝑥 + 2𝑥3 = 0 and sketch of the path in the 

phase-plane. Locate the critical points and determine the nature of each. 

 

Hint: 

The critical points 

(0, 0) is maximum and it is saddle point and (±
1

2
 , 0) is minimum and it is a centre. 

Exercise3: For each of the following systems, sketch the solution trajectories in the 

phase plane and the indicate on the sketch there critical points and their types as well as 

separatrices: 

 

i) 𝑢 + 𝑢 − 2𝑢3 = 0 

ii) 𝑢 − 𝑢 + 𝑢3 = 0 

iii) 𝑢 + 𝑢 + 𝑢3 = 0 

iv) 𝑢 − 𝑢 − 𝑢3 = 0 
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v) 𝑢 + 𝑢3 = 0 

vi) 𝑢 + 𝑢 −
𝜆

𝑎−𝑢
= 0 

Hints:  

      (i) and  (iii) → One centre and two saddle points. 

(ii) and  (iv) → Two centre and one saddle points. 

     (v) → One centre. 

    (vi) → 𝑖𝑓 𝜆 < 0, then it has two centre. 

𝑖𝑓 𝜆 = 0, then it has one centre. 

             if 0 < 𝜆 <
𝑎2

4
, then it has one saddle point and centre. 

if 𝜆 >
𝑎2

4
, then it represents no critical point. 
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UNIT-13 

Limit Cycles: Poincaré-Bendixon theorem (statement only). Criterion for the existence of 

limit cycle for Liénard‟s equation. 

 

13.1 Introduction: 

We have already encountered autonomous systems having closed paths. For example, 

the system has a center at (0,0) and in the neighborhood of this center there is an infinite 

family of closed paths resembling ellipses (see Figure 13.21). In this example the closed 

paths about (0,0) form a continuous family in the sense that arbitrarily near to any one of the 

closed paths of this family there is always another closed path of the family. Now we shall 

consider systems having closed paths which are isolated in the sense that there are no other 

closed paths of the system arbitrarily near to a given closed path of the system. 

What is the significance of a closed path? Given an autonomous system 

𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑄(𝑥, 𝑦),

                                                                                (13.1) 

one is often most interested in determining the existence of periodic solutions of this system. 

It is easy to see that periodic solutions and closed paths of  are very closely related. For, in 

the first place, if 𝑥 = 𝑓1(𝑡), 𝑦 = 𝑔1(𝑡), where 𝑓1 and 𝑔1 are not both constant functions, is a 

periodic solution of (13.4), then the path which this solution defines is a closed path. On the 

other hand, let 𝐶 be a closed path defined by a solution 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), and suppose 

𝑓 𝑡0 = 𝑥0, 𝑔 𝑡0 = 𝑦0. Since 𝐶 is closed, there exists a value 𝑡1 = 𝑡0 + 𝑇, where 𝑇 > 0, 

such that 𝑓 𝑡1 = 𝑥0, 𝑔 𝑡1 = 𝑦0 . Now the pair 𝑥 = 𝑓(𝑡 + 𝑇), 𝑦 = 𝑔(𝑡 + 𝑇) is also a solution 

of (13.4). At 𝑡 = 𝑡0, this latter solution also assumes the values 𝑥 = 𝑥0, 𝑦 = 𝑦0 . the two 

solutions 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡) and 𝑥 = 𝑓(𝑡 + 𝑇), 𝑦 = 𝑔(𝑡 + 𝑇) are identical for all 𝑡. In other 

words, 𝑓(𝑡 + 𝑇) = 𝑓(𝑡), 𝑔(𝑡 + 𝑇) = 𝑔(𝑡) for all 𝑡, and so the solution 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡) 

defining the closed path 𝐶 is a periodic solution. Thus, the search for periodic solutions falls 

back on the search for closed paths.Now suppose the system has a closed path 𝐶. Further, 

suppose it  possesses a nonclosed path 𝐶1 defined by a solution 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡) and 

having the following property: As a point 𝑅 traces out 𝐶1 according to the equations 𝑥 =
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𝑓(𝑡), 𝑦 = 𝑔(𝑡), the path 𝐶1 spirals and the distance between 𝑅 and the nearest point on the 

closed path 𝐶 approaches zero either as 𝑡 → +∞ or as 𝑡 → −∞. In other words, the nonclosed 

path 𝐶1 spirals closer and closer around the closed path 𝐶 either from the 𝐶1 approaches 𝐶 

from the outside). 

In such a case we call the closed path 𝐶 a limit cycle, according to the following definition: 

13.2 (Definition): 

 Poincare showed that the differential equation of the form 

𝑥 = 𝑥 𝑥, 𝑦 , 𝑦 = 𝑦(𝑥, 𝑦)    ……………………..(13.2) 

Admits occasionally special solutions represented by the closed curves in the phase-plane 

which called limit cycles. A limit cycle is called closed trajectory (hence the trajectory of 

periodic solution) such that no trajectory sufficiently near to it is closed. In other words a 

limit cycle is an isolated closed trajectory. Every trajectory beginning sufficiently near a limit 

cycle approach it for 𝑡 → ∞ or for 𝑡 → −∞ i.e., it either winds itself upon the line cycle or 

unwinds form it. In all nearby trajectories approach a limit cycle C as 𝑡 → ∞, we say that C is 

stable (figure 13.1a), if they approach C as 𝑡 → −∞, we say that that C is unstable(figure 

13.1b). It is trajectories on one side of C approach it while those on the other side depart from 

it, we say that C is semi-stable(figure 13.1c). 

 

 

                Figure 13.1a                            Figure 13.1b                              Figure 13.1c 

 Stable limit cycle   unstable limit cycle semi-stable limit cycle 

             (𝑡 → ∞)          ( 𝑡 → −∞)   ( → ∞ and 𝑡 → −∞) 

13.2  Example of Limit Cycles: 

a) Consider the system 

𝑥 = 𝑦 +
𝑥

 𝑥2+𝑦2
 {1 − (𝑥2 + 𝑦2)} 

𝑦 = −𝑥 +
𝑦

 𝑥2+𝑦2
 {1 − (𝑥2 + 𝑦2)}      …………………………………….(13.3) 

It polar co-ordinates it becomes, 
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𝑥 = 𝑦 +
𝑥

𝑟
 (1 − 𝑟2), 𝑦 = −𝑥 +

𝑦

𝑟
 (1 − 𝑟2) (Since x = rcos𝜃, y = rsin𝜃) 

Noting that, 𝑥𝑥 + 𝑦𝑦 =
1

2

𝑑

𝑑𝑡
 𝑟2  𝑎𝑛𝑑 𝑥 𝑦 − 𝑦 𝑥 = −𝑟2𝜃  (𝑥 = 𝑥 cos 𝜃 − 𝑟𝑠𝑖𝑛𝜃 𝑎𝑛𝑑 𝑦 =

𝑟 sin 𝜃 + 𝑟𝑐𝑜𝑠 𝜃. 𝜃 )  

We get,  

1

2

𝑑

𝑑𝑡
 𝑟2 = 𝑥{𝑦 +

𝑥

𝑟
 1 − 𝑟2 + 𝑦{−𝑥 +

𝑦

𝑟
 1 − 𝑟2 } 

or, 𝑟𝑟  = r 1 − 𝑟2  

and– 𝑟2𝜃 = 𝑦{𝑦 +
𝑥

𝑟
 1 − 𝑟2 + 𝑥  −𝑥 +

𝑦

𝑟
 1 − 𝑟2  =  𝑥2 + 𝑦2 = 𝑟2 . 

i.e.,𝜃 = −1 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Since 𝜃 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, so the radius vector with constant angular velocity. The 

equation are 𝑟  =  1 − 𝑟2 on integration leads to  

 𝑟 =  
𝐴𝑒2𝑡−1

𝐴𝑒2𝑡+1
 

Initially, t = 0 then 𝑟 = 𝑟0 =
𝐴−1

𝐴+1
  where 𝑟0(≠ 1) being the initial value of r. 

 Now 𝑟 → 1 𝑎𝑠 𝑡 → ∞ and the limit cycle in the case is a circle of radius unity. If 

(𝑟0>1) the spiral winds itself onto the circle. If r = 1 from the inside. The limit cycle in this 

case is stable. 

b) Consider the differential equation  

𝑥 = −𝑦 + 𝑥(𝑥2 + 𝑦2 − 1) 

𝑦 = 𝑥 + 𝑦(𝑥2 + 𝑦2 − 1)        ……………………….(13.3) 

The polar equations those equation given by 

𝑟  = 𝑟 1 − 𝑟2 , 𝜃 = 1. 

The equation 𝑟  = 𝑟 1 − 𝑟2  tends to the solution  

𝑟2 =
1

1 − 𝐴𝑒2𝑡
 

When 𝑡 → ∞ then r = 0 i.e., the path does not exists. 

Thus   𝑟 → 1 𝑎𝑠 𝑡 → −∞. Hence the limit cycle r = 1 is unstable. 

(c) The differential equations 

𝑥 = 𝑦 + 𝑥 𝑥2 + 𝑦2 𝑥2 + 𝑦2 − 1 2 
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𝑦 = −𝑥 + 𝑦 𝑥2 + 𝑦2 𝑥2 + 𝑦2 − 1 2 

Gives an example of semi-stable limit circle. In the polar co-ordinates the system reduces to 

𝑟  = 𝑟2 1 − 𝑟2 2, 𝜃 = −1. 

and the equation of first two differential equation leads to the required limit cycle. 

Note: The phase portrait for the equation tells the story. The equilibrium point r=0 is a source 

whereas r=1 is a node because 𝑟 >0 for 0<r<1 and r>1 as well. The graphical interpretation of 

this fact is that the unit circle described by r=1 is a semi-stable limit cycle. Trajectories 

approach the unit circle from inside it whereas trajectories that start outside escape the unit 

circle. 

 

13.3Negative Criterion of Bendixon: 

 Bendixon establish a theorem for the non-existence of the limit cycles and this 

theorem is known as negative criterion of Bendixon and given a sufficient condition. 

Theorem-13.1: Given a system of differential equations 𝑥 = 𝑋 𝑥, 𝑦 , 𝑦 = 𝑌 𝑥, 𝑦 ; the 

negative condition of Bendixon states that if the expansion 
𝜕𝑋

𝜕𝑥
+

𝜕𝑌

𝜕𝑦
 does not change its 

sign(or vanish identically) within a region D of the phase plane 𝑅2, no closed trajectory can 

exists in D (where D is simple connected domain). 

Proof: 

 By Green‟s theorem we have, 

  
𝜕𝑋

𝜕𝑥
+

𝜕𝑌

𝜕𝑦
 𝑑𝑥𝑑𝑦

𝐷

=    𝑋𝑑𝑦 − 𝑌𝑑𝑥 
𝐶

 

 In the contour C even which the integration is performed in a closed trajectory of the 

equations, the line integral 

  𝑋𝑑𝑦 − 𝑌𝑑𝑥 
𝐶

 

     =   𝑋𝑦 − 𝑌𝑥  
𝐶

𝑑𝑡 

     =   𝑥 𝑦 − 𝑦 𝑥  
𝐶

𝑑𝑡 = 0. 

 This contradicts the hypothesis according to which the double integral can not vanish 

which implies if (
𝜕𝑋

𝜕𝑥
+

𝜕𝑌

𝜕𝑦
) does not vanish or change it sign, then no closed path exists in D. 
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Statement: Let D be the bounded region of phase-plane together with its boundary and 

assume that D does not contain critical point of the system 𝑥 = 𝑋 𝑥, 𝑦 , 𝑦 = 𝑌 𝑥, 𝑦 . If C = 

[x(t), y(t)] is the path of the given system that lies in D for all 𝑡 ≥ 𝑡0, then C is either a closed 

path or spirals towards a closed path as 𝑡 → ∞. Thus in system has a closed path in D. 

  

 

Example-1: 

a) Show that the following non-linear autonomous system 𝑥 = 4𝑥 + 4𝑦 − 𝑥 𝑥2 +

𝑦2 , 𝑦 = 4𝑥 + 4𝑦 − 𝑦(𝑥2 + 𝑦2) has a periodic solution. 

b) Show that the equation 𝑥 + 𝑓 𝑥 𝑥 + 𝑔 𝑥 𝑥 = 0 can have no periodic solution whose 

path lies in a region where f is of one sign(Applied negative criteria of Bendixon). 

13.5Lienard’sEquation:The equation of the form 

𝑥 + 𝑓 𝑥 𝑥 + 𝑔 𝑥 𝑥 = 0     ………………………….(13.5) 

is generally known as Lienard‟s equation. It is a suppose that f(x) is a positive when  𝑥  is a 

large and negative and  𝑥  is small, and g(x) is such that in the absence of the damping term 

f(x)𝑥  we exposed periodic solutions for small x. 

Let us put 𝑥 = 𝑦 − 𝐹 𝑥 , 𝑦 = −𝑔(𝑥)     ………………………..(13.6) 

where F(x)=  𝑓(𝑢)𝑑𝑢
𝑥

0
 

Statement of Lienard’s Theorem: 

 The equation 𝑥 + 𝑓 𝑥 𝑥 + 𝑔 𝑥 𝑥 = 0 has a unique periodic solution if f(x) and g(x) 

are continuous and 

(i) F(x) is an odd function. 

(ii) F(x) = 0 only at x = 0 and x = ±𝑎 for some a > 0.  

(iii) F(x)→ ∞ as x→ ∞ monotonically for x > a. 

(iv) g(x) is an odd function. 

Note-1:The unique periodic solution corresponds to a unique closed path surrounding to 

origin in the phase-plane and this path is approached spirally (by every other path) as 𝑡 → ∞. 

Note-2:The general pattern of the path can be obtained from the following consideration. 

(a) If [x(t), y(t)] is a solution, so is [−x(t), −y(t)] (since F(x) and g(x) are odd). Thus the 

phase diagram is symmetrical about the origin. 

(b) The slope of the path is given by  
𝑑𝑦

𝑑𝑥
=

−𝑔(𝑥)

𝑦−𝐹(𝑥)
   ……………………………….(13.7) 

𝑠𝑜 the path are horizontal only on x = 0(by(iv)) and vertical only on the curve y = 

F(x). About y = F(x), 𝑥 > 0 and below 𝑥 < 0. 

13.4: Poincare-Bendixon Theorem (P-B Theorem): 
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(c) 𝑦 > 0 𝑖𝑓 𝑥 > 0 𝑎𝑛𝑑 𝑦 > 0 𝑖𝑓 𝑥 < 0 𝑏𝑦  𝑖𝑣  .  

Lienard’s Criterion for the Existence of Limit Cycle: 

 Let 𝑣 𝑥, 𝑦 =  𝑓(𝑢)𝑑𝑢
𝑥

0
+

1

2
𝑦2      ………………………….(13.8) 

where 
1

2
𝑦2 may be regarded as K.E and G(x) =  𝑓(𝑢)𝑑𝑢

𝑥

0
 as the potential energy so that 

𝑣 𝑥, 𝑦  is the total energy stored in the oscillation. Alone the element of the path we have, 

 𝑑𝑣 = 𝑔𝑑𝑥 + 𝑦𝑑𝑦 = 𝑔 𝑥 
𝑑𝑥

𝑑𝑦
𝑑𝑦 + 𝑦𝑑𝑦 = 𝑔 𝑥 

𝑦−𝐹 𝑥 

−𝑔 𝑥 
𝑑𝑦 + 𝑦𝑑𝑥 = 𝐹(𝑥)𝑑𝑦 

 The energy exchange of the system is  𝐹(𝑥)𝑑𝑦 and if the system is in a stationary 

state of the oscillation alone the closed path C then we have, 

  𝐹 𝑥 𝑑𝑦 = 0………………………………(13.9) 

 This linear integral is to be taken alone a trajectory. Equation (13.9) is Lienard‟s 

Criteria for the existence of the limit cycle for Lienard‟s equations (13.5). 

13.6 Lienard’s Method of Constructing Integral Curves. 

 Consider the equation 

𝑥 + 𝑓 𝑥  + 𝜔2𝑥 = 0     ………………..(13.10) 

Let 𝜏 = 𝜔𝑡 and then the equation (13.10) transformed into 

 𝑥″ + 𝜑(𝑥 ′) + 𝜔2𝑥 = 0    ……………………….(13.11) 

where prime indicates derivative w.r.to 𝜏 and 𝜑(𝑥 ′) =
1

𝜔
 𝑓(𝜔𝑥2). 

Putting 𝑥 ′ = 𝑦, 𝑦 ′ = −𝜑 𝑦 − 𝑥 

We have the following differential equations for the trajectories 

𝑑𝑦

𝑑𝑥
= −

𝜑 𝑦 +𝑥

𝑦
    ………………….(13.12) 

To draw the trajectories, we first plot the curve 𝑥 = −𝜑(𝑦) on the phase plane. 
 

To initiate the trajectory passing through point A, we draw the line parallel to the x-axis 

intersecting the curve 𝑥 = −𝜑(𝑦) at the point B. Construct the line BC parallel to the y-axis, 

intersecting the x-axis at the point C. Then the line CA is perpendicular to the direction field 

at A, because the slope of CA is  

𝐵𝐶

𝐴𝐵
=

𝑦

𝑥+𝜑(𝑦)
. We draw a line from A perpendicular to AC and approximate the integral by the 

short line segment AA, alone the direction field. Then starting with 𝐴1, we repeat the process. 
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13.7 Asymptotic Cases of Lienard’s Equation: 

 We consider Lienard‟s equation with parameter 𝜇 in the form 

𝑥 + 𝜇𝑓 𝑥 𝑥 + 𝑥 = 0   ……………………………(13.13) 

and we pass to the asymptotic case 𝜇 → 0 𝑎𝑛𝑑 𝜇 → ∞. Let us put 𝑥 = 𝑦 − 𝜇𝐹 𝑥 𝑎𝑛𝑑 𝑦 =

−𝑥 where  F(x) =  𝑓(𝑢)𝑑𝑢
𝑥

0
. Then we have  

𝑑𝑦

𝑑𝑥
+

𝑥

𝑦−𝜇𝐹  𝑥 
= 0      ……………………….(13.14) 

Let y = 𝜇𝑧, then the equation (13.14) is transformed into  

𝑑𝑧

𝑑𝑥
= −

𝑥

𝜇 2[𝑧−𝐹 𝑥 ]
   …………………………(13.15) 

If 𝜇 > 1, for some x, the integral curves are smaller slopes than previously. If 𝜇 → ∞ then 
𝑑𝑧

𝑑𝑥
→ 0 thus for increasing 𝜇 the integral curves exhibit flat portions parallel to the x-axis. 

 In the asymptotic case 𝜇 → ∞ then equation (13.15) reduces to [𝑧 − 𝐹 𝑥 ]dz= 0. This 

suggest that the integral curve consists of two branches : on one of them there exists the 

relation. z = F(x) and on the other dz = 0 i.e., this branch the straight line parallel to the x-

axis. 

 

In other to investigate the velocity of the representative point R(x(t), y(t)), we have 

𝑥 = 𝜇[𝑧 − 𝐹 𝑥 ] and 𝑧 = −
𝑥

𝜇
        ……………(13.16) 
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 In R follows the branch z = F(x), in the asymptotic case when 𝜇 is large, the velocity 

𝑥  is finite. For the second branch z ≠ 𝐹 𝑥 , 𝑥  is large. Thus the horizontal branches (z = 

constant) are traversed with a very high velocity, where the characteristic F(x) is traversed 

with a finite velocity. This gives rise to a situation shown in figure 3.3  corresponding to f(x) 

=𝑥2 − 1 i.e., F(x)= 
1

3
𝑥3 − 𝑥, as in the case of Van der Pol equation  𝑥 + 𝜇 𝑥2 − 1 𝑥 + 𝑥 =

0. 

 The point R follows F(x) upto the point where the second branch z = constant. On this 

branch BC, the point acquired a very high velocity and practically in no time. At C begins 

again the first branch traversed with finite velocity upto the point D where another jump DA 

begins thus closing, the curve BCDAB consisting of two distinct branches. 

 The second asymptotic case i.e., when 𝜇 is small, is less integrating. Here Lienard‟s 

equation can be written as  

 𝑥𝑑𝑥 + 𝑦𝑑𝑦 − 𝜇𝐹 𝑥 𝑑𝑦 = 0. 

which reduces to 𝑥𝑑𝑥 + 𝑦𝑑𝑦 = 0 when 𝜇 → 0 which gives a 𝑥2 + 𝑦2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 family of 

concentric circle with centre at origin. 

Definition 1: 

Let C be a path of the system (13.1) and let x = f(t), y = g (t) be a solution of (13.1) defining 

C. Then we shall call set of all points of C for t≥ 𝑡0, where 𝑡0 is some value of t, a half-path 

of (13.1). In otherwords, by a half-path of (13.1) we mean the set of all points with co-

ordinates [f(t), g(t)] for 𝑡0 ≤ 𝑡 < +∞. We denote a half-path of (13.1) by 𝐶+. 

 

DEFINITION 2: 

Let 𝐶+be a half-path of (13.4) defined by 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡) for 𝑡 ≥ 𝑡0. Let  𝑥1, 𝑦1  be a 

point in the 𝑥𝑦 plane. If there exists a sequence of real numbers  𝑡𝑛  , 𝑛 = 1,2, …, such that 

𝑡𝑛 → +∞ and  𝑓 𝑡𝑒 𝑔 𝑡𝑛  →  𝑥1, 𝑦1  as 𝑛 → +∞, then we call  𝑥1, 𝑦1 𝑎 limit point of C+. 

The set of all limit points of a half-path C+will be called the limit set of C+and will be 

denoted by 𝐿 𝐶∗ . 

 

Example:  

The paths of the system (13.3) are given by Equations . Letting 𝑐 = 1 we obtain the path 𝐶 

defined by 

𝑥 =
cos⁡𝑡

 1 + 𝑒−2𝑡
,

𝑦 = −
sin⁡𝑡

 1 + 𝑒−2𝑡
,
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The set of all points of 𝐶 for 𝑡 ≥ 0 is a half-path 𝐶+. That is, 𝐶+is the set of all points with 

coordinates 

 
cos⁡𝑡

 1 + 𝑒−2𝑡
, −

sin⁡𝑡

 1 + 𝑒−2𝑡
 , 0 ≤ 𝑡 < +∞. 

Consider the sequence 0,2𝜋, 4𝜋, … ,2𝑛𝜋, …, tending to +∞ as 𝑛 → +∞. The corresponding 

sequence of points on 𝐶+is 

 
cos⁡2𝑛𝜋

 1 + 𝑒−4𝑛𝜋
, −

sin⁡2𝑛𝜋

 1 + 𝑒−4𝑛𝜋
 , (𝑛 = 0,1,2, … ), 

and this sequence approaches the point (1,0) as 𝑛 → +∞. 

Thus (1,0) is a limit point of the half-path 𝐶∗. 

The set of all limit points of 𝐶+is the set of points such that 𝑥2 + 𝑦2 = 1. In other words, the 

circle 𝑥2 + 𝑦2 = 1 is the limit set of 𝐶+. 

We are now in a position to state the Poincare-Bendixson theorem. 

 

THEOREM 13.1 Poincare-Bendixson Theorem; "Strong"' Form:  

 

Hypothesis 

1 Consider the autonomous system 

𝑑𝑥

𝑑𝑡
= 𝑃(𝑥, 𝑦),

𝑑𝑦

𝑑𝑡
= 𝑄(𝑥, 𝑦),

        (13.1) 

where 𝑃 and 𝑄 have continuous first partial derivatives in a domain 𝐷 of the 𝑥𝑦 plane. Let 𝐷1 

be a bounded subdomain of 𝐷, and let 𝑅 denote 𝐷1 phus its boundary. 

2 Let 𝐶+defined by 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), 𝑡 ≥ 𝑡0, be a half-path of (𝐼3,1) contained 

entirely in 𝑅. Suppose the limit set 𝐿 𝐶+ of 𝐶+contains no critical points of (13.1). 

Conclusion. Either (l) the half-path 𝐶+is itself a closed path [in this case 𝐶+and 

𝐿 𝐶+ are identical], ar (2)𝐿 𝐶+ is a closed path which 𝐶+approaches spirally from 

either the inside or the outside [in this case 𝐿 C+ is a limit cycle]. Thus in either case, 

there exists a closed path of (13.1) in 𝑅. 

A slightly weaker but somewhat more practical form of this theorem may be seen at once. If 

the region 𝑅 of Hypothesis 1 contains no critical points of (13.4), then the limit set 𝐿 𝐶+ will 

contain no critical points of (13.1) and so the second statement of Hypothesis 2 will 

automatically be satisfied. Thus we may state: 
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1 Exactly as in Theorem 13.I. 

2 Suppose 𝑅 contains no critical points of (13.1). 

Conclusion, If 𝑅 contains a half-path of (13.1), then 𝑅 also contains a closed path of (13.1). 

Let us indicate how this theorem may be applied to determine the existence of a closed path 

of (13.1). Suppose the continuity requirements concerning the derivatives of 𝑃(𝑥, 𝑦) and 

𝑄(𝑥, 𝑦) are satisfied for all (𝑥, 𝑦). Further suppose that (13.1) has a critical point at  𝑥0, 𝑦0  

but no other critical points within some circle 

𝐾 =  𝑥 − 𝑥0 
2 +  𝑦 − 𝑦0 

2 = 𝑟2 

about  𝑥0, 𝑦0  (see Figure 13.31). Then an annular region whose boundary consists of two 

smaller circles 𝐾1:  𝑥 − 𝑥0 
2 +  𝑦 − 𝑦0 

2 = 𝑟2
1  and 𝐾2:  𝑥 − 𝑥0 

2 +  𝑦 − 𝑦0 
2 = 𝑟2

2 , where 

0 < 𝑟1 < 𝑟2 < 𝑟, about  𝑥0, 𝑦0  may be taken as a region 𝑅 containing no critical points of 

(13.1). If we can then show that a half-path 𝐶+of (13.1) (for 𝑡 ≥ some 𝜏0 ) is entirely 

contained in this annular region 𝑅, then we can conclude at once that a closed path 𝐶0 of 

(13.1) is also contained in 𝑅. 

The difficulty in applying Theorem 13.1A usually comes in being able to show that a half-

path 𝐶+is entirely contained in 𝑅. If one can show that the vector [𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦)] 

determined by (13.1) points into 𝑅 at ever 𝑦 point of the boundary of 𝑅, then a path 𝐶 

entering 𝑅 at 𝑡 = 𝑡0 will remain in 𝑅 for 𝑡 ≥ 𝑡0 and hence provide the necded half-path 𝐶+. 

 

Example: 

Consider again the system (13.3) with critical point (0,0). The annular region 𝑅 bounded by 
1

𝑥2 + 𝑦2 =  and 𝑥2 + 𝑦2 = 4 contains no critical points of (13.3). If we can show that 𝑅 
4

contains a half-path of (13.3), the Poincaré-Bendixson theorem ("weak" form) will apply. 

In our previous study of this system we found that 

𝑑𝑟
= 𝑟 1 − 𝑟2  

𝑑𝑡

for 𝑟 > 0, where 𝑟 =  𝑥2 + 𝑦2. On the circle 𝑥2 + 𝑦2 =
1

4
, 𝑑𝑟/𝑑𝑡 > 0 and hence 𝑟 =

 𝑥2 + 𝑦2 is increasing. Thus the vector [𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦)] points into 𝑅 at every point of this 

inner circle. On the circle 𝑥2 + 𝑦2 = 4, 𝑑𝑟/𝑑𝑡 < 0 and hence 𝑟 =  𝑥2 + 𝑦2 is decreasing. 

Thus the vector [𝑃(𝑥, 𝑦), 𝑄(𝑥, 𝑦)] also points into 𝑅 at every point of this outer circle. Hence 

a path 𝐶 entering 𝑅 at 𝑡 = 𝑡0 will remain in 𝑅 for 𝑡 ≥ 𝑡0, and this provides us with the needed 

half-path contained in 𝑅. 

Thus by the Poincark-Bendixson theorem ("weak" form), we know that 𝑅 contains a closed 

path 𝐶0 - We have already seen that the circle 𝑥2 + 𝑦2 = 1 is indeed such a closed path of 

(13.3). 

THEOREM 13.1A Poincaré-Bendixson Theorem; "Weak" Form 

Hypothesis 
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13.6 The Index of a Critical Point: 

 

We again consider the system (13.1), where 𝑃 and 𝑄 have continuous first partial derivatives 

for all (𝑥, 𝑦), and assume that all of the critical points of (13.1) are isolated. Now consider a 

simple closed curve* 𝐶[not necessarily a path of (13.1)] which passes 

13.7 The Lienard-Levinson-Smith Theorem and the van der Pol Equation: 

Throughout this chapter we have stated a number of important results without proof. We have 

done this because we feel that every serious student of differential equations should become 

aware of these results as soon as possible, even though their proofs are definitely beyond our 

scope and properly belong to a more advanced study of our subject. In keeping with this 

philosophy, we close this section by stating without proof an important theorem dealing with 

the existence of periodic solutions for a class of second-order nonlinear equations. We shall 

then apply this theorem to the famous van der Pol equation already introduced at the 

beginning of the chapter. 

 

THEOREM 𝟏𝟑. 𝟐 Lienard-Levinson-Smith:  

 

Hypothesis. Consider the differential equation 

𝑑2𝑥

𝑑𝑡2 + 𝑓(𝑥)
𝑑𝑥

𝑑𝑡
+ 𝑔(𝑥) = 0     (13.17) 

where 𝑓, 𝑔, 𝐹 defined by 𝐹(𝑥) =  
0

𝑥
 𝑓(𝑢)𝑑𝑢, and 𝐺 defined by 𝐺(𝑥) =  

0

𝑥
 𝑔(𝑢)𝑑𝑢 are real 

functions having the following properties: 

1 𝑓 is even and is continuous for all 𝑥. 

2 There exists a number 𝑥0 > 0 such that 𝐹(𝑥) < 0 for 0 < 𝑥 < 𝑥0 and 𝐹(𝑥) > 0 and 

monotonic increasing for 𝑥 > 𝑥0. Further, 𝐹(𝑥) ⇒ ∞ as 𝑥 → ∞. 

3 𝑔 is add, has a continuous deribative for all 𝑥, and is such that 𝑔(𝑥) > 0 for 𝑥 > 0. 

4 𝐺(𝑥) → ∞ as 𝑥 → ∞. 

Conclusion. Equation (13.17) possesses an essentially unique nontrivial periodic 

solution. 

 

Remark: By "essentially unique" in the above conclusion we mean that if 𝑥 = 𝜙(𝑡) is a 

nontrivial periodic solution of (13.17), then all other nontrivial periodic solutions of (13.17) 

are of the form 𝑥 = 𝜙 𝑡 − 𝑡1 , where 𝑡1 is a real number. In other words, the equivalent 

autonomous system 
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𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= −𝑓(𝑥)𝑦 − 𝑔(𝑥),

      (13.18) 

has a unique closed path in the 𝑥𝑦 plane. 

One of the most important examples of an equation of the form (13.17) which satisfies the 

hypotheses of Theorem 13.2 is the van der Pol equation 

𝑑2𝑥

𝑑𝑡2 + 𝜇 𝑥2 − 1 
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0,      (13.19) 

where 𝜇 is a positive constant. Here 𝑓(𝑥) = 𝜇 𝑥2 − 1 , 𝑔(𝑥) = 𝑥, 

𝐹(𝑥) =   
𝑥

0

𝜇 𝑢2 − 1 𝑑𝑢 = 𝜇  
𝑥3

3
− 𝑥 . 

and 

𝐺(𝑥) =   
𝑥

0

𝑢𝑑𝑢 =
𝑥2

2
. 

We check that the hypotheses of Theorem 13.2 are indeed satisfied: 

1 Since 𝑓(−𝑥) = 𝜇 𝑥2 − 1 = 𝑓(𝑥), the function 𝑓 is even. Clearly it is continuous for 

all 𝑥. 

2 𝐹(𝑥) = 𝜇 𝑥3/3 − 𝑥  is negative for 0 < 𝑥 <  3. For 𝑥 >  3, 𝐹(𝑥) is positive and 

monotonic increasing (it is, in fact, monotonic increasing for 𝑥 > 1 ). Clearly 

𝐹(𝑥) → ∞ as 𝑥 → ∞. 

3 Since 𝑔(−𝑥) = −𝑥 = −𝑔(𝑥), the function 𝑔 is odd. Since 𝑔′(𝑥) − 1, the derivative 

of 𝑔 is continuous for all 𝑥. Obviously 𝑔(𝑥) > 0 for 𝑥 > 0. 

4 Obviously 𝐺(𝑥) → ∞ as 𝑥 → ∞. 

Thus the conclusion of Theorem 13.2 is valid, and we conclude that the van der Pol 

equation (13.18) has an essentially unique nontrivial periodic solution. In other words, 

the equivalent autonomous system 

𝑑𝑥

𝑑𝑡
= 𝑦,

𝑑𝑦

𝑑𝑡
= 𝜇 1 − 𝑥2 𝑦 − 𝑥,

      (13.20) 

has a unique closed path in the 𝑥𝑦 plane. 

The differential equation of the paths of the system (13.93) is 

𝑑𝑦

𝑑𝑥
=

𝜇 1 − 𝑥2 𝑦 − 𝑥

𝑦
. 
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Using the method of isoclines  one can obtain the paths defined by (13.20) in the 𝑥𝑦 plane. 

The results for 𝜇 = 0.1, 𝜇 = 1, and 𝜇 = 10 are shown.respectively. The limit cycle 𝐶 in each 

of these figures is the unique dosed path whose existence we have already ascertained on the 

basis of Theorem 13.2. For 𝜇 = 0.1 we note that this limit cycle is very nearly a circle of 

radius 2 . For 𝜇 = 1, it has lost its circle-like form and appears rather "baggy," while for 

𝜇 = 10, it is very long and narrow. 

 

 

Exercises:  

(i) Show that the equation  

𝑥 +
𝑥2+ 𝑥 −1

𝑥2− 𝑥 +1
𝑥 + 𝑥3 = 0 has a unique period solution. 

(ii) Show that the Van der Pol equation 

equation  𝑥 + 𝜇 𝑥2 − 1 𝑥 + 𝑥 = 0,  𝜇 > 0  has a unique periodic solution(apply 

Lienard‟s theorem). 

Hints:x> 0, F(x) =  𝑓(𝑢)𝑑𝑢
𝑥

0
 = 𝑥 + log 𝑥2 − 𝑥 + 1 −

2

 3
tan−1 2𝑥−1

 3
−

𝜋

3 3
 

and if , x < 0, F(x) = 𝑥 − log 𝑥2 + 𝑥 + 1 −
2

 3
tan−1 2𝑥+1

 3
+

𝜋

3 3
. 
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UNIT-14 

 

Stability: Definition in Liapunov sense. Routh-Hurwitz criterion for nonlinear systems. 

 

14.1 Introduction: 

 The equation of stability is concerned with what happens a system is disturbed near an 

equilibrium condition in general terms near an unstable equilibrium condition leads to a 

larger and larger departure from this condition. Near a stable equilibrium condition, the 

opposite is the case and the equilibrium condition may be either stationary or oscillatory.  

When it is stationary, the variables of the system remain constant and when it is oscillatory, 

the variable undergo continuous periodic change. The stability of a linear system is well 

defined but since new type of phenomenon arises in a non-linear system, it is not possible to 

use the single definition of stability which is meaningful on all cases. For this reason, stability 

is defined in a number of ways. 

14.2 Stability of Equilibrium Solutions (Liapunor Stability):  

 Consider the regular system 

𝑥  = 𝑓 (𝑥 , 𝑡), 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , 𝑡 ∈ 𝑅 …………………………(14.1) 

with 𝑓 (𝑥 , 𝑡) continuous in 𝑥  and t and Lipchitz continuous in 𝑥 . 

Definition-1: Liapunor Stability: 

 Let 𝑥 (𝑡) be a given regular complex solution of (4.1). Then 𝑥 (𝑡) is said to be 

Liapunor stability for 𝑡 ≥ 0 if for any 𝜖 > 0, then there exist a 𝛿 𝑡, 𝑡0 > 0 such that 

 𝑥 (𝑡0) − 𝑥 ∗(𝑡0)) < 𝛿 ⇒  𝑥 (𝑡) − 𝑥 ∗(𝑡)) < 𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0 .…………(14.2) 

where 𝑥 (𝑡) is any other solution. Otherwise 𝑥 (𝑡) is said to be unstable. 

Definition-2: Uniform Stability: 

 If a solution is stable for 𝑡 ≥ 𝑡0 and the 𝛿 ofdefinition-1 is dependent of 𝑡0, the 

solution is said to be uniformly stable on 𝑡 ≥ 𝑡0. 
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 It is clear that any stable solution of an autonomous system must be uniformly stable, 

since the stable is invariant w,r,t time translation. 

Definition-3: Asymptotic Stability: 

 Let 𝑥 (𝑡) be stable (or uniformly stable) solution for 𝑡 ≥ 𝑡0. If additionally there exists 

𝜂 𝑡0 > 0 such that 

 𝑥 (𝑡0) − 𝑥 ∗(𝑡0)) < 𝜼 

lim𝑡→∞    𝑥 (𝑡) − 𝑥 ∗(𝑡)) = 0.      …………(14.3) 

 Then the solution is said to be asymptotic stable (or uniformly asymptotically stable). 

14.3: Stability of Periodic Solutions:  

Definition-4: Liapunor Stability: 

 Consider the equation𝑥  = 𝑓 (𝑥 , 𝑡) with periodic solution 𝜑  (𝑡). The periodic solution is 

Liapunor stable if for each 𝑡0 and 𝜖 > 0 we can find 𝛿(𝜖, 𝑡0) such that 

 𝑥 (𝑡0) − 𝜑  (𝑡0)) < 𝜹 

⇒ 𝑥 (𝑡) − 𝜑  (𝑡)) < 𝜖, for all 𝑡 ≥ 𝑡0 . 

 

Definition-5:Poincare Stability: 

 Let C be a closed orbit (a closed path) of 𝑥  = 𝑓 (𝑥 ). We say that C is periodically or 

orbitally stable if given any 𝜖 > 0, we can find 𝛿(𝜖) such that if R is a representative point of 

another trajectory which is within a distance 𝛿 of C at a time 𝑡0, then R remains within a 

distance 𝜖 of C for all 𝑡 ≥ 𝑡0 . If no such 𝛿 exists, C is said to be periodically or orbitally 

unstable. 

 Let C be the orbitally unstable. If, in addition, the distance between R and C tends to 

zero as 𝑡 → ∞, it is said to be asymptotically periodically or asymptotically orbitally stable. 

14.4: Linear Equations: 

 There is a large numbers of theorems of linear equations of which we state a summary 

of some important results. 

I. Equations with Constant Coefficients:  

Consider the equation 

𝑥  = 𝐴𝑥       ……………..………….(14.4) 

with A, a non-singular constant 𝑛𝑥𝑛 matrix. The eigen values are solutions of the 

characteristic equations 
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 det(A−𝜆𝐼) = 0.      ………………………(14.5) 

 Suppose that the eigen values 𝜆𝑘  are distinct with corresponding eigen vectors 𝐶𝑘
      (k = 

1, 2, …, n). In this case 𝐶𝑘
     eλk t(k = 1, 2, …, n) are n-independent solutions (14.4). Suppose 

now that not an eigen values are distinct, for instance the eigen value 𝛌 multiplicity m>1. 

This eigen value 𝛌 generates m-independent solutions of the form 𝑃0
     (𝑡)eλt , 𝑃1

    (𝑡)eλt , …, 

𝑃  𝑚−1(𝑡)eλt  where 𝑃  𝑘(𝑡), (k = 1, 2, …, m-1) of polynomial vectors of degree k. 

 We compose n-independent solutions 𝑥1 𝑡 , 𝑥2 𝑡 , … , 𝑥𝑛 𝑡  of equations (14.4) to 

from a matrix 𝜑(𝑡) with the solutions as columns 

𝜑 𝑡 =  𝑥1 𝑡 , 𝑥2 𝑡 , … , 𝑥𝑛 𝑡  
𝑇
 

 where 𝜑(𝑡) is called a fundamental matrix of equation (14.4). Each solution of 

equation (4.4) can be written as  

 𝑥  𝑡 = 𝜑(𝑡)𝐶𝑘
      . 

 where 𝐶𝑘
        is constant vector using the initial condition  𝑥  𝑡0 = 𝑥 0, we have the 

required solution  

𝑥  𝑡 = 𝜑 𝑡 𝜑−1(𝑡0)𝑥 0      …………………………..(14.6) 

 We may choose the fundamental matrix 𝜑 𝑡  such that 𝜑 𝑡0 = 𝐼, the 𝑛𝑥𝑛 identity 

matrix. 

Theorem-14.1: 

 Consider the equation 𝑥  = 𝐴𝑥  with A non-singular constant 𝑛𝑥𝑛 matrix havingeigen 

values 𝛌1, 𝛌2, …, 𝛌n. 

(a) If Real 𝛌k<0, (k = 0, 1, 2,…,n), then for each𝑥  𝑡0 = 𝑥 0 ∈ 𝑅𝑛  and suitable positive 

constants C and 𝜇 er have, 

 𝑥  𝑡  ≤ 𝑐 𝑥0      𝑡  e−μt       and  lim𝑡→∞ 𝑥  𝑡 = 0. 

(b) If Real 𝛌k≤0, (k = 1, 2,…,n) where the eigen values with 𝛌k = 0 are distinct, then 

𝑥  𝑡  is bounded for 𝑡 ≥ 𝑡0 , Explicitly  𝑥  𝑡  ≤ 𝑐 𝑥0      . 

(c)  If there exists an eigen values 𝛌k with real 𝛌k>0 then each nbd of 𝑥 = 0  , there 

are initial values such that the corresponding solutions we have, 

lim
𝑡→∞

 𝑥  𝑡  = +∞. 

 In the case (a), then solution 𝑥 = 0   is asymptotically stable, in the case (b) 𝑥 = 0   is 

Liapunor stable and for the case (c), it is unstable. 

Note:The solution the equation 𝑥  = 𝐴𝑥  can be written in different way by using the concept 

of exponential matrix 
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𝑥  𝑡 = 𝑒𝐴𝑡𝑐 where 𝑒𝐴𝑡 = 1 + 𝐴𝑡 +
𝐴2𝑡2

2!
      ……………………(14.7) 

The fundamental motion 𝜑(𝑡) and inverse can be written as  

𝜑 𝑡 = 𝑒𝐴𝑡and 𝜑−1 𝑡 = 𝑒−𝐴𝑡     ……………………………….(14.8) 

II. Equations with coefficients which have a Limit: 

Consider the equation 

𝑥  = 𝐴𝑥  + 𝐵(𝑡)𝑥     …………………………(14.9) 

with A, a non-singular constant 𝑛𝑥𝑛 matrix B(t) a continuous 𝑛𝑥𝑛 matrix. Iflim𝑡→∞ 𝐵 𝑡  =

0, then the solutions of (4.9)will tend to the solutions of 𝑥  = 𝐴𝑥 . 

Theorem-14.2: Consider the equation𝑥  = 𝐴𝑥  + 𝐵(𝑡)𝑥  and suppose that 

(a) The eigen values 𝛌k(k =1, 2,…,n)of A have real 𝛌k ≤ 0, the eigen values 

corresponding to real 𝛌k are distinct  

and (b)   𝐵 𝑡  𝑑𝑡
∞

𝑡0
 is bounded then the solution of equation (4.9) are bounded and 

𝑥 = 0   is Liapunor stable. 

Theorem-14.3: Consider the equation𝑥  = 𝐴𝑥  + 𝐵(𝑡)𝑥 , B(t) is continuous for 𝑡 ≥ 𝑡0 with 

(a) A is constant 𝑛𝑥𝑛 matrix having eigen values 𝛌k(k = 1, 2,…,n)s.t  real 𝛌k< 0 

And (b)lim𝑡→∞ 𝐵 𝑡  = 0, then solutions of equation(14.9) we have  

lim𝑡→∞ 𝑥  𝑡  = 0   and  𝑥 = 0   is a asymptotically stable. 

Theorem-14.3: Consider the equation𝑥  = 𝐴𝑥  + 𝐵(𝑡)𝑥 , B(t) is continuous for 𝑡 ≥ 𝑡0 and the 

property that lim𝑡→∞ 𝐵 𝑡  = 0. If at least one eigen value of the matrix A has a +𝑣𝑒 real 

part, there exists in each nbd of 𝑥 = 0   solution 𝑥 (𝑡)such that lim𝑡→∞ 𝑥  𝑡  = +∞. The 

solution 𝑥 = 0  is unstable. 

III. Equations with Periodic Coefficients: 

Consider the equation 

𝑥  = 𝐴 𝑡 𝑥 , 𝑡 ∈ 𝑅    …………………………………..(14.10) 

with A(t) is continuous T-periodic 𝑛𝑥𝑛 matrix i.e., A(t+T) = A(t). 

Theorem-14.3:Floequet′s Theorem: 

Consider the equation 𝑥  = 𝐴 𝑡 𝑥 , 𝑡 ∈ 𝑅with A(t) is continuous T-periodic 𝑛𝑥𝑛 

matrix. Then each fundamental matrix 𝜑(𝑡) of this equation can be written as the 
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periodic 𝑛𝑥𝑛 matrices in the form 𝜑 𝑡 = P t eβt  with P(t), T-periodic and β, a 

constant 𝑛𝑥𝑛 matrix. 

Proof:The fundamental matrix 𝜑 𝑡  is compound of n-independent solutions and 

so 𝜑 𝑡 + 𝑇  is also fundamental matrix. If we put 𝜏 = 𝑡 + 𝑇. Then  

𝑑𝑥 

𝑑𝜏
= 𝐴 𝜏 − 𝑇 𝑥 = 𝐴 𝜏 𝑥 . 

𝑆𝑜𝜑(𝜏) i.e., 𝜑(𝑡 + 𝑇) is fundamental matrix. The fundamental matrices 𝜑(𝑡) and 

𝜑(𝑡 + 𝑇) are linearly independent i.e., 𝜑 𝑡 + 𝑇 = 𝜑 𝑡 𝐶 where C  is non-singular 

𝑛𝑥𝑛 matrix. There exists a constant matrix 𝛽 such that C = 𝑒𝛽𝑡 . We now proof that 

𝜑 𝑡 𝑒−𝛽𝑡  is T-periodic. Let P(t)= 𝜑 𝑡 𝑒−𝛽𝑡  then 

𝑃 𝑡 + 𝑇 = 𝜑 𝑡 + 𝑇 𝑒−𝛽(𝑡+𝑇) 

= 𝜑 𝑡 𝐶𝑒−𝛽𝑡 𝑒−𝛽𝑇  

= 𝜑 𝑡 𝐼𝑒−𝛽𝑡  

= 𝜑 𝑡 𝑒−𝛽𝑡  

= 𝑃(𝑡) 

Thus, P(t) and 𝜑 𝑡 𝑒−𝛽𝑡  is T-periodic. 

14.6: Stability by Linearization: 

 The stability of linear solutions or periodic solutions can be studied by analysing 

the system, linearized in the nbd. of those special solutions. The justification of 

linearization method has been shown by Poincare′ and Liapunor. In this path we 

require Gronwall′s inequality see article-1.3) given as follows- 

 Assume that for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, a being the positive constant, we have the 

estimate 

 𝜑 𝑡 = 𝛿1  𝛹 𝑠 𝜑 𝑠 𝑑𝑠 + 𝛿2
𝑡

𝑡0
     …………………………… 14.11) 

In which 𝜑 𝑡  𝑎𝑛𝑑 𝛹 𝑡 are continuous functions 𝜑 𝑡 ≥ 0 𝑎𝑛𝑑 𝛹 𝑡 ≥ 0 and 

𝛿1 𝑎𝑛𝑑 𝛿2 are +𝑣𝑒 constant. Then we have for 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎 

𝜑 𝑡 ≤ 𝛿2𝑒
𝛿1  𝛹 𝑠 𝑑𝑠

𝑡
𝑡0       ………………………………………… 14.12) 
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Asymptotic Stability of the Trivial Solution: 

Theorem-14.6: Poincare′ Liapunor Theorem: 

 Consider the equation 

𝑥  = 𝐴𝑥 + 𝐵 𝑡 𝑥 + 𝑕   𝑥 , 𝑡 , 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , 𝑡 ∈ 𝑅, 𝑥  𝑡0 = 𝑥0     
 

     (14.13) 

Where A is a constant 𝑛𝑥𝑛 matrix with eigen values which have all negative real points; 

B(t) continuous 𝑛𝑥𝑛 matrix with the property lim𝑡→∞ 𝑥  𝑡  = 0. The vector function 

𝑕   𝑥 , 𝑡  in continuous in 𝑥  and t and Lipschitz continuous in 𝑥  on nbd of 𝑥 = 0  , Moreover 

we have lim
𝑡→∞

 𝑕    𝑥 ,𝑡  

 𝑥  𝑡  
= 0 uniformly in t. Then there exists +𝑣𝑒 constant c, 𝑡0 , 𝛿, 𝜇 such 

that  𝑥 0 < 𝛿 implies  𝑥  𝑡  < 𝑐 𝑥 0 𝑒
(𝑡−𝑡0 ), 𝑡 ≥ 0. The solution  𝑥 = 0   asymptotically 

stable and the alteration is exponential in a 𝛿 − 𝑛𝑏𝑑 of  𝑥 = 0  . 

 

Proof : 

 From theorem (14.1) we have estimate for the fundamental matrix 𝜑(𝑡) of the 

equation 𝜑  𝑡 = 𝐴𝜑 𝑡 , 𝜑 𝑡0 = 𝐼 as 𝜑 𝑡 = 𝑒(𝑡−𝑡0). As the eigen values of A has all non-

zero real part, there exists +𝑣𝑒 constant c and such that 

 𝑥  𝑡  < 𝑐 𝑥 0 𝑒
(𝑡−𝑡0 ), 𝑡 ≥ 𝑡0  

 It follows that the assumption on 𝑕   and B that for 𝛿 > 0 sufficiently smoll, there 

exists a constant b(𝛿) such that if  𝑥  < 𝛿 we have 

 𝑕   𝑥 , 𝑡  < b 𝛿  𝑥  , 𝑡 ≥ 𝑡0  

and if 𝑡0  is sufficiently large 

 𝐵(𝑡) < 𝑏 𝛿 , 𝑡 ≥ 𝑡0 

 The existence and uniqueness theorem shows that, in the nbd of 𝑥 = 0  , the 

solution of initial value problem (14.13)exits for 𝑡0 ≤ 𝑡 ≤ 𝑡1 and therefore, this solution 

can be continued for all 𝑡 ≥ 𝑡0 . 

 Let, 𝑥 = 𝜑 𝑡 𝑧  and substitutes this equation (14.13) to obtain  

𝜑  𝑡 𝑧 + 𝜑 𝑡 𝑧  = 𝐴𝜑 𝑡 𝑧 + 𝐵 𝑡 𝜑 𝑡 𝑧 + 𝑕  (𝜑 𝑡 𝑧 , 𝑡) 

𝑖. 𝑒. , 𝑧  = 𝜑−1 𝑡 𝐵 𝑡 𝜑 𝑡 𝑧 + 𝜑−1 𝑡 𝑕   𝜑 𝑡 𝑧 , 𝑡 𝑎𝑠 𝜑  𝑡 = 𝐴𝜑 𝑡  

 Integration of this expression and multiplication with 𝜑(𝑡) produces for the 

solutions of equation (14.13), the integral equation 
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𝑥  𝑡 = 𝜑 𝑡 𝑥 0 +  𝜑 𝑡 − 𝑠 + 𝑡0 [𝐵 𝑠 𝑥  𝑠 + 𝑕   𝑥  𝑠 , 𝑠 ]𝑑𝑠 
𝑡

𝑡0
 …………………. 14.14) 

where we have used the result 

𝜑 𝑡 𝜑−1 𝑠 = 𝑒𝐴(𝑡−𝑡0)𝑒−𝐴(𝑠−𝑡0 ) = 𝑒𝐴(𝑡−𝑠) = 𝜑 𝑡 − 𝑠 + 𝑡0  

Using the estimate for 𝜑, 𝐵 𝑎𝑛𝑑 𝑕  we have for 𝑡0 ≤ 𝑡 ≤ 𝑡1, 

 𝑥  𝑡  ≤  𝜑 𝑡   𝑥 0 +   𝜑 𝑡 − 𝑠 + 𝑡0    𝐵 𝑠   𝑥  𝑠  +  𝑕   𝑥  𝑠 , 𝑠   𝑑𝑠
𝑡

𝑡0

 

≤ 𝑐𝑒−𝜇0 𝑡−𝑡0  𝑥 0 +  𝑐𝑒−𝜇(𝑡−𝑠)2𝑏
𝑡

𝑡0
 𝑥  𝑠  𝑑𝑠. 

So that  

𝑒𝜇0 𝑡−𝑡0  𝑥  𝑡  ≤ 𝑐 𝑥 0 +  𝑐𝑒𝜇0(𝑠−𝑡0)2𝑏
𝑡

𝑡0
 𝑥  𝑠  𝑑𝑠. 

Putting 𝜑 𝑡 = 𝑒𝜇0(𝑡−𝑡0 ) 𝑥  𝑡  , 𝛹 𝑡 = 2𝑐𝑏, 𝛿1 = 1, 𝛿2 = 𝑐 𝑥 0 , we obtain from 

inequality (4.12) 

𝑒𝜇0 𝑡−𝑡0  𝑥  𝑡  ≤ 𝑐 𝑥 0 𝑒
2𝑐𝑏 (𝑡−𝑡0 ) 

 𝑥  𝑡  ≤ 𝑐 𝑥 0 𝑒
(2𝑐𝑏−𝜇0)(𝑡−𝑡0)     …………………………….. 14.15) 

 If 𝛿 consequently b are small enough the 𝜇 = 𝜇0 − 2𝑐𝑏 is +𝑣𝑒 and we have the 

required estimate for 𝑡0 ≤ 𝑡 ≤ 𝑡1. We choose  𝑥 0  such that 𝑐 𝑥 0 < 𝛿. So the estimate 

(14.15) holds for all 𝑡 ≥ 𝑡0. 

Theorem-14.7: 

 Consider the equation 

𝑥  = 𝐴𝑥 + 𝐵 𝑡 𝑥 + 𝑕   𝑥 , 𝑡 , 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , 𝑡 ∈ 𝑅………………………………. 14.16) 

with A(t) is T-periodic, continuous matrix; the vector function 𝑕   𝑥 , 𝑡  is continuous in 

𝑥 and t and Lipschitz continuous in 𝑥  for 𝑡 ∈ 𝑅 in the nbd of 𝑥 = 0  . Moreover we have  

lim
𝑡→∞

 𝑕    𝑥 ,𝑡  

 𝑥  𝑡  
= 0 uniformly in t. If a real paths of the characteristic exponents of the 

characteristic exponents of linear periodic equation  

 𝑥  = 𝐴 𝑡 𝑥  ……………………… (14.17) 

are negative, the solution 𝑥 = 0   of equation (14.16) is asymptotically stable and the 

attraction is the exponential in the 𝛿 − 𝑛𝑏𝑑 of 𝑥 = 0  . 
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Proof: 

 Let 𝑥 = 𝑃(𝑡)𝑧  with P(t) a periodic matrix belonging to the fundamental matrix 

solution of equation (4.17). We find from (14.16) 

 𝑃  𝑡 𝑧 + 𝑃 𝑡 𝑧  = 𝐴 𝑡 𝑃 𝑡 𝑧 + 𝑕  (𝑃 𝑡 𝑧 , 𝑡) 

𝑧  = 𝑃−1 𝐴𝑃 − 𝑃  𝑧 + 𝑃−1𝑕  (𝑃𝑧 , 𝑡) ……………………………….. 14.18) 

Putting P(t)= 𝜑 𝑡 𝑒−𝛽𝑡 , where 𝜑 𝑡  being fundamental matrix of (14.16) we have 

𝑃 = 𝜑 𝑒−𝛽𝑡 + 𝜑𝑒−𝛽𝑡  −𝛽  

= 𝐴𝜑𝑒−𝛽𝑡 + 𝜑𝑒−𝛽𝑡  −𝛽  

𝐴𝑃 − 𝑃𝛽 

 Since 𝜑 = 𝐴𝜑, hence (14.18) gives  

𝑧  = 𝛽𝑧 + 𝑃−1𝑕  (𝑃𝑧 , 𝑡)   ……………………………….. 14.19) 

 The constant matrix 𝛽 has only eigen values with −𝑣𝑒 real parts. The solution 

𝑧 = 0   of solution (14.19) satisfies the requirements of the Poincare-Liapunor theorem 

from which the result follows. 

Theorem 14.8: 

 Consider the equation in 𝑅𝑛  is as follows 

𝑥  = 𝐴𝑥 + 𝐵 𝑡 𝑥 + 𝑕   𝑥 , 𝑡 , 𝑡 ≥ 𝑡0  …………………………… 14.20) 

with A aconstant  𝑛𝑥𝑛matrix  having eigen values of which at least  one has positive real 

part; B(t) is a continuous 𝑛𝑥𝑛 matrix with the property lim𝑡→∞ 𝐵(𝑡) . The vector 

function 𝑕   𝑥 , 𝑡  is continuous in 𝑥  and t;Lipschitz continuous in 𝑥  in a nbd of 𝑥 = 0  ;if 

moreover we have lim 𝑥  →0
 𝑕    𝑥 ,𝑡  

 𝑥  
= 0, uniformly in t.The trivail solution of  equation 

(14.20) is unstable. 

Proof: 

Let 𝛿 be the non-singular constant 𝑛𝑥𝑛 matrix. We put 𝑥 = 𝛿 in (14.20) to obtain 

𝑦  = 𝛿−1𝐴𝛿𝑦 + 𝛿−1𝐵 𝑡 𝛿𝑦 + 𝛿−1𝑕   𝛿𝑦 , 𝑡     ………………………………… 14.21) 

The solution 𝑥  𝑡  is real valued, 𝑦  𝑡  was generally be complex function. In stability of 

the trivial solution of equation (14.21) implies stability of the trivial solution of 1(4.20). 

For simplicity we assume that 𝛿 can be chosen such that 𝛿−1𝐴𝛿 is in diagonal form form 

i.e., the eigen values 𝜆𝑖  of the matrix A lie on the main diagonal of 𝛿−1𝐴𝛿 and the other 

matrix elements are zero. We put Re(𝜆𝑖)≥ 𝜍 > 0, i = 1, 2, …, k and Re(𝜆𝑖) ≤ 0, i = 
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𝑘 + 1, 𝑘 + 2, … , 𝑛. Let 𝑅2 =   𝑦𝑖  
2𝑘

𝑖=1  𝑎𝑛𝑑 𝑟2 =   𝑦𝑖  
2𝑛

𝑖=𝑘+1  . Using (4.21) we compute 

the derivatives of 𝑅2  𝑎𝑛𝑑 𝑟2; we shall use the result 

𝑑

𝑑𝑡
 𝑦𝑖  

2 =
𝑑

𝑑𝑡
 𝑦𝑖𝑦𝑖  = 𝑦𝑖 𝑦𝑖 + 𝑦𝑖𝑦𝑖 = 2𝑅𝑒𝜆𝑖  𝑦𝑖  

2 +  𝛿−1𝐵 𝑡 𝛿𝑦  𝑖𝑦𝑖    + 𝑦𝑖 𝛿
−1𝐵 𝑡 𝛿𝑦  𝑖 +

 𝛿−1𝑕   𝛿𝑦 , 𝑡  
𝑖
𝑦𝑖    + 𝑦𝑖  𝛿

−1𝑕   𝛿𝑦 , 𝑡  
𝑖
. 

 Now we choose 𝜖 > 0, 𝑡0 , 𝛿 and t. For 𝑡 ≥ 𝑡0  and  𝑦  < 𝛿, we have 

 𝛿−1𝐵 𝑡 𝛿𝑦  𝑖 ≤ 𝜖 𝑦  , 

 𝛿−1𝑕   𝛿𝑦 , 𝑡  
𝑖
≤ 𝜖 𝑦   

∴
1

2

𝑑

𝑑𝑡
 𝑅2 − 𝑟2 ≥   𝑅𝑒𝜆𝑖 − 𝜖   𝑦𝑖 

2 −

𝑘

𝑖=1

  𝑅𝑒𝜆𝑖 + 𝜖   𝑦𝑖  
2

𝑛

𝑖=𝑘+1

 

 We choose 0 < 𝜖 <
1

2
𝜍 and we have Re𝜆𝑖 − 𝜖 ≥ 𝜍 − 𝜖 ≥ 𝜖, 𝑖 = 1, 2, … , 𝑘 and 

Re𝜆𝑖 + 𝜖 ≤ 𝜖, 𝑓𝑜𝑟 𝑖 = 𝑘 + 1, 𝑘 + 2, … , 𝑛. 

It follows that  

 
1

2

𝑑

𝑑𝑡
 𝑅2 − 𝑟2 ≥ 𝜖 𝑅2 − 𝑟2 , 𝑡 ≥ 𝑡0,  𝑦  < 𝛿  ……………………… 14.22) 

If we choose the initial values such that  𝑅2 − 𝑟2 𝑡=𝑡0
= 𝑎 > 0 then we find from 

(4.22) 𝑦  2 ≥ 𝑅2 − 𝑟2 ≥ 𝑎𝑒2𝜖 𝑡−𝑡0 . So this solution leaves the domain determined by 

 𝑦  < 𝛿; the trivial solution is unstable. 

14.7: Rough-Hunwitz Criterion for Stability of Non-Linear Systems: 

 Consider the autonomous system 

𝑥  = 𝑓 (𝑥 )   …………………………………………… 14.23) 

In order to investigate the stability of the system near a chosen a critical point, 

we apply a sufficiently small disturbance to the system by choosing the 𝑥 ′𝑠 from their 

equilibrium values 𝑥 0(𝑠𝑎𝑦). If, as time t increases in definitely, all the 𝑥 ′𝑠 return to their 

original equilibrium values with increasing t, the system is unstable.  

Consider the small variation 𝜉  of the equilibrium values 𝑥 0for the 𝑥 ′𝑠 is given by 

𝑥 = 𝑥 0 + 𝜉 . Substituting in (14.23) and discarding term of order higher than the first in 

the 𝜉 ′𝑠, we get 

𝜉 
 
= 𝐴𝜉          ……………………………………….. 14.24) 
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𝑤𝑕𝑒𝑟𝑒 A =  𝑎𝑖𝑗  =  
𝑑𝑓 

𝑑 𝑥1 ,𝑥2 ,…,𝑥𝑛  
 
𝑥     =𝑥 0

 is a 𝑛𝑥𝑛 constant matrix at the equilibrium state 

𝑥     = 𝑥 0. We assume that the matrix A is non-singular i.e., det A ≠ 0. 

 The characteristic equation is  

det (A−𝝀𝑰)=0, when expanded, leads to an equation of the form  

𝑎0𝜆
𝑛 + 𝑎1𝜆

𝑛−1 + ⋯ + 𝑎𝑛−1 + 𝑎𝑛 = 0.   …………………………. 14.25) 

 It was shown by Liapunor that if Re𝝀 < 0, the corresponding equilibrium state is 

stable; if at least of equation (14.25) has a +𝑣𝑒 real roots, the equilibrium isunstable. 

 We construct a set of n-determinants of the n-th degree equation (14.25) is as 

follows 

∆1=  𝑎1 ,  ∆2=  
𝑎1 𝑎0

0 𝑎2
 , ∆3=  

𝑎1 𝑎0 0
𝑎2 𝑎1 𝑎0

0 0 𝑎3

 , ∆4=  

𝑎1 𝑎0 0     0
𝑎2 𝑎1 𝑎0    0
𝑎3 𝑎2 𝑎1   𝑎0

0       0      0    𝑎4

  

and ∆𝑛=   

𝑎1 𝑎0           0         0 ……… .0
𝑎2 𝑎1           𝑎0       0 ……… .0
……………………………… . .
𝑎𝑛−1𝑎𝑛−2𝑎𝑛−3 𝑎𝑛−4 … . 𝑎0

0         0           0            0  …… 0

   

 The Rough-Hunwitz criterion states that Re 𝛌 < 0, provided that all the 

coefficients that 𝑎𝑖 for i = 1, 2, …, n  are +𝑣𝑒 and all the determinants ∆𝑖(for i =

 1, 2, … , n) are positive also.  

 Nothing that ∆𝑛= 𝑎𝑛∆𝑛−1, it follows that for stability both 𝑎𝑛 > 0, ∆𝑛−1> 0. 

 

14.8 Linear Stability Analysis: 

  

 So far we have relied on graphical methods to determine the stability of fixed points. 

Frequently one would like to have a more quantitative measure of stability, such as the rate of 

decay to a stable fixed point. This sort of information may be obtained by linearizing about a 

fixed point, as we now explain. 

Let 𝑥∗ be a fixed point, and let 𝜂(𝑡) = 𝑥(𝑡) − 𝑥∗ be a small perturbation away from 𝑥∗. To 

see whether the perturbation grows or decays, we derive a differential equation for 𝜂. 

Differentiation yields 

𝜂 =
𝑣 

𝑤 
 𝑥 − 𝑥∗ = 𝑥  
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since 𝑥∗ is constant. Thus 𝜂 = 𝑥 = 𝑓(𝑥) = 𝑓 𝑥∗ + 𝜂 . Now using Taylor's expansion we 

obtain 

𝑓 𝑥+ + 𝜂 = 𝑓 𝑥2 + 𝜂𝑓′  𝑥4 + 𝑂 𝜂2 , 

where 𝑂 𝜂2  denotes quadratically small terms in 𝜂. Finally, note that 𝑓 𝑥∗ = 0 since 𝑥∗ is 

a fixed point. Hence 

𝜂 = 𝜂𝑓′ 𝑥∗ + 𝑂 𝜂2 . 

Now if 𝑓′ 𝑥∗ ≠ 0, the 𝑂 𝜂2  terms are negligible and we may write the approximation 

𝜂 = 𝜂𝑓′ 𝑥∗ . 

This is a linear equation in 𝜂, and is called the linearization about 𝑥∗. It shows that the 

perturbation 𝜂(𝑡) grows exponentially if 𝑓′ 𝑥∗ > 0 and decays if 𝑓′ 𝑥∗ < 0. If 𝑓′ 𝑥∗ = 0, 

the 𝑂 𝜂2  terms are not negligible and a nonlinear analysis is needed to determine stability, 

as discussed in Example below. 

The upshot is that the slope 𝑓′ 𝑥∗  at the fixed point determines its stability. If you look back 

at the earlier examples, you'll see that the slope was always negative at a stable fixed point. 

The importance of the sign of 𝑓′  𝑥∗  was clear from our graphical approach; the new feature 

is that now we have a measure of how stable a fixed point is-that's determined by the 

magnitude of 𝑓′ 𝑥∗ . This magnitude plays the role of an exponential growth or decay rate. 

Its reciprocal 1/ 𝑓′ 𝑥4   is a characteristic time scale; it determines the time required for 

𝑥(𝑡) to vary significantly in the neighborhood of 𝑥∗. 

 

EXAMPLE-1: 

Using linear stability analysis, determine the stability of the fixed points for 𝑥 = sin⁡𝑥. 

Solution: The fixed points occur where 𝑓(𝑥) = sin⁡𝑥 = 0. Thus 𝑥∗ = 𝑘𝜋, where 𝑘 is an 

integer. Then 

𝑓′ 𝑥∗ = cos⁡𝑘𝜋 =  
1, 𝑘 even 

−1, 𝑘 odd. 
  

Hence 𝑥∗ is unstable if 𝑘 is even and stable if 𝑘 is odd.  

EXAMPLE-2: 

Classify the fixed points of the logistic equation, using linear stability analysis, and find the 

characteristic time scale in each case. 

Solution: Here 𝑓(𝑁) = 𝑟𝑁  1 −
𝑁

𝐾
 , with fixed points 𝑁∗ = 0 and 𝑁∗ = 𝐾. Then 𝑓′ (𝑁) =

𝑟 −
2𝑟𝑁

𝐾
 and so 𝑓′ (0) = 𝑟 and 𝑓′ (𝐾) = −𝑟. Hence 𝑁∗ = 0 is unstable and 𝑁∗ = 𝐾 is stable, 
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as found earlier by graphical arguments. In either case, the characteristic time scale is 
1

 𝑓 ′  𝑁∗  
=

1

𝑟
. 

 

EXAMPLE-3: 

What can be said about the stability of a fixed point when 𝑓′  𝑥∗ = 0 ? 

Solution: Nothing can be said in general. The stability is best determined on a case-by-case 

basis, using graphical methods. Consider the following examples: 

(a) 𝑥 = −𝑥3 

(b) 𝑥 = 𝑥3 

(c) 𝑥 = 𝑥2 

(d) 𝑥 = 0 

Each of these systems has a fixed point 𝑥∗ = 0 with 𝑓′ 𝑥∗ = 0. However the stability is 

different in each case. Which shows that (a) is stable and (b) is unstable. Case (c) is a hybrid 

case we'll call half-stable, since the fixed point is attracting from the left and repelling from 

the right. We therefore indicate this type of fixed point by a half-filled circle. Case (d) is a 

whole line of fixed points; perturbations neither grow nor decay. 

These examples may seem artificial, but we will see that they arise naturally in the context of 

bifurcations-more about that later. 

 

14.9 Existence and Uniqueness 

 

Our treatment of vector fields has been very informal. In particular, we have taken a cavalier 

attitude toward questions of existence and uniqueness of solutions tothe system 𝑥 = 𝑓(𝑥). 

That's in keeping with the "applied" spirit of this book. Nevertheless, we should be aware of 

what can go wrong in pathological cases. 

EXAMPLE-4: 

Show that the solution to 𝑥 = 𝑥1/3 starting from 𝑥0 = 0 is not unique. 

Solution: The point 𝑥 = 0 is a fixed point, so one obvious solution is 𝑥(𝑡) = 0 for all 𝑡. The 

surprising fact is that there is another solution. To find it we separate variables and integrate: 

 𝑥−1/3𝑑𝑥 =  𝑑𝑡 

so 
3

2
𝑥2/3 = 𝑡 + 𝐶. Imposing the initial condition 𝑥(0) = 0 yields 𝐶 = 0. Hence 𝑥(𝑡) =

 
2

3
𝑡 

3/2

 is also a solution! 

When uniqueness fails, our geometric approach collapses because the phase point doesn't 

know how to move; if a phase point were started at the origin, would it stay there or would it 
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move according to 𝑥(𝑡) =  
2

3
𝑡 

3/2

 ? (Or as my friends in elementary school used to say 

when discussing the problem of the irresistible force and the immovable object, perhaps the 

phase point would explode!) 

Actually, the situation in Example 2.5.1 is even worse than we've let on-there are infinitely 

many solutions starting from the same initial condition. 

Existence and Uniqueness Theorem: Consider the initial value problem 

𝑥 = 𝑓(𝑥), 𝑥(0) = 𝑥0. 

Suppose that 𝑓(𝑥) and 𝑓′ (𝑥) are continuous on an open interval 𝑅 of the 𝑥-axis, and suppose 

that 𝑥0 is a point in 𝑅. Then the initial value problem bas a solution 𝑥(𝑡) on some time 

interval (−𝜏, 𝜏) about 𝑡 = 0, and the solution is unique. 

For proofs of the existence and uniqueness theorem, see Borrelli and Coleman (1987), Lin 

and Segel (1988), or virtually any text on ordinary differential equations. 

This theorem says that if 𝑓(𝑥) is smooth enough, then solutions exist and are unique. Even 

so, there's no guarantee that solutions exist forever, as shown by the 

EXAMPLE-5: 

Discuss the existence and uniqueness of solutions to the initial value problem 𝑥 = 1 +

𝑥2, 𝑥(0) = 𝑥0. Do solutions exist for all time? 

Solution: Here 𝑓(𝑥) = 1 + 𝑥2. This function is continuous and has a continuous derivative 

for all 𝑥. Hence the theorem tells us that solutions exist and are unique for any initial 

condition 𝑥0. But the theorem does not say that the solutions exist for all time; they are only 

guaranteed to exist in a (possibly very short) time interval around 𝑡 = 0. 

For example, consider the case where 𝑥(0) = 0. Then the problem can be solved analytically 

by separation of variables: 

 
𝑑𝑥

1 + 𝑥2
=  𝑑𝑡, 

which yields 

tan−1⁡𝑥 = 𝑡 + 𝐶 

The initial condition 𝑥(0) = 0 implies 𝐶 = 0. Hence 𝑥(𝑡) = tan⁡𝑡 is the solution. But notice 

that this solution exists only for −𝜋/2 < 𝑡 < 𝜋/2, because 𝑥(𝑡) → ±∞ as 𝑡 → ±𝜋/2. 

Outside of that time interval, there is no solution to the initial value problem for 𝑥0 = 0. 

The amazing thing about Example 2.5.2 is that the system has solutions that reach infinity in 

finite time. This phenomenon is called blow-up. As the name suggests, it is of physical 

relevance in models of combustion and other runaway processes, 
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There are various ways to extend the existence and uniqueness theorem. One can allow 𝑓 to 

depend on time 𝑡, or on several variables 𝑥1 … , 𝑥𝑖. One of the most useful generalizations will 

be discussed later in Section 6.2. 

From now on, we will not worry about issues of existence and uniqueness-our vector fields 

will typically be smooth enough to avoid trouble. If we happen to come across a more 

dangerous example, we'll deal with it then. 

 

Exercises:  

1. Discuss the stability of the equilibrium points of the systems with f(x) given by 

(a)  
𝑥1 − 𝑥1𝑥2

𝑥2 − 𝑥1
2   

(b)  
−4𝑥2 + 2𝑥1𝑥2 − 8

4𝑥2
2 − 𝑥1

2   

(c)  
2𝑥1 − 2𝑥1𝑥2

2𝑥2 − 𝑥1
2 + 𝑥2

2  

(d)  

−𝑥1

−𝑥2 + 𝑥1
2

𝑥3 + 𝑥1
2

  

(e)  

𝑥2 − 𝑥1

𝑘𝑥1 − 𝑥2 − 𝑥1𝑥3

𝑥1𝑥2 − 𝑥3

 . 

Hint: In 1 (e), the origin is a sink if 𝑘 < 1 and a saddle if 𝑘 > 1. It is a 

nonhyperbolic equilibrium point if 𝑘 = 1. 

 

2. Use the Liapunov function 𝑉(𝐱) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 to show that the origin is an 

asymptotically stable equilibrium point of the system 

𝐱 =  

−𝑥2 − 𝑥1𝑥2
2 + 𝑥3

2 − 𝑥1
3

𝑥1 + 𝑥3
3 − 𝑥2

3

−𝑥1𝑥3 − 𝑥3𝑥1
2 − 𝑥2𝑥3

2 − 𝑥3
5

 . 

Show that the trajectories of the linearized system x = 𝐷𝐟(𝟎)x for this problem lie on 

circles in planes parallel to the 𝑥1, 𝑥2 plane; hence, the origin is stable, but not 

asymptotically stable for the linearized system. 
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UNIT-15 

 

Liapunov‟s criterion for stability. Stability of periodic solutions. Floquet‟s theorem.  

 

15.1: Stability Analysis by Direct Method: 

 We now discusses a method of studying the stability of solution of the non-linear 

system without linearising it. For this, we first defined  Liapunor functions. 

 Liapunor functions: Consider the equation  

𝑥  = 𝑓  𝑥 , 𝑡 , 𝑡 ≥ 𝑡0 , 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛       …………………………………………… 15.1) 

and assume that the trivial solution satisfied the equation 𝑓  0  , 𝑡  = 0  , 𝑡 ≥ 𝑡0, 0  ∈ 𝐷. We 

introduce a function V(𝑥 , 𝑡) which is defined and continuously differentiable in 

[𝑡0, ∞]𝑥𝐷, 𝐷 ⊂ 𝑅𝑛 . Moreover𝑥 = 0   is an interior point of D and V(𝑥 , 𝑡) does not depend 

explicitly on t and we write V(𝑥 ). 

 The function V(𝑥 )(with V(0  )=0) is called +𝑣𝑒𝑙𝑦(−𝑣𝑒𝑙𝑦) definite in D in 

V(𝑥 )>0(<0) for 𝑥 ∈ 𝐷, 𝑥 ≠ 0  . The function V(𝑥 )(with V(0  )=0) is called +𝑣𝑒𝑙𝑦(−𝑣𝑒𝑙𝑦) 

semi-definite in D if V(𝑥 )≥ 0(≤ 0) for 𝑥 ∈ 𝐷, 𝑥 ≠ 0  . 

 The function V(𝑥 , 𝑡) is called +𝑣𝑒𝑙𝑦(−𝑣𝑒𝑙𝑦) definite in D if there exists a function 

𝑤(𝑥 ) such that 𝑤(𝑥 ) is defined and continuous in D, 𝑤 0   = 0,0 < 𝑤 𝑥  ≤

V(𝑥 , 𝑡)(V(𝑥 , 𝑡)≤ 𝑤 𝑥  < 0) for 𝑥 ≠ 0  , 𝑡 ≥ 𝑡0. 

 To define semi-definite functions V(𝑥 , 𝑡), we replace <(>)≤  ≥ . 

 The function V(𝑥 ) or V(𝑥 , 𝑡) is called Liapunor function. 

 Some examples of Liapunor function in 𝑅3  are as follows 

 V(𝑥 ) = 𝑥2 + 2𝑦2 + 3𝑧2 + 𝑧3(+𝑣𝑒𝑙𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒) 

 V(𝑥 ) = 𝑥2 + 𝑧2(+𝑣𝑒𝑙𝑦 𝑠𝑒𝑚𝑖 − 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒) 

 V(𝑥 , 𝑡) = −𝑥2 sin2 𝑡 − 𝑦2 − 4𝑧2(−𝑣𝑒𝑙𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒) 

where in all cases 𝐷 =  
𝑥,𝑦,𝑧

𝑥2 + 𝑦2 + 𝑧2 ≤ 1 𝑎𝑛𝑑 𝑡 ≥ 0. 
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The Orbital Derivatives: 

 The orbit derivative 𝐿𝑡  of the function of the function V(𝑥 , 𝑡) in the direction of the 

vector field 𝑥 , where 𝑥  is a solution of 𝑥  = 𝑓  𝑥 , 𝑡  is defined by 

 𝐿𝑡𝑉 =
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥 
𝑥   

  =
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥 
𝑓  𝑥 , 𝑡  

=
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥1
𝑓1(𝑥1, 𝑡) +

𝜕𝑉

𝜕𝑥2
𝑓2(𝑥2, 𝑡) + ⋯ +

𝜕𝑉

𝜕𝑥𝑛
𝑓𝑛(𝑥𝑛 , 𝑡). 

Theorem-15.1: First Theorem of Liapunov: 

 Consider the equation 𝑥  = 𝑓  𝑥 , 𝑡  with 𝑓  0  , 𝑡 = 0  , 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , 𝑡 ≥ 𝑡0. If a 

Liapunor function V(𝑥 , 𝑡) can be found, defined in a nbd of 𝑥 = 0   and positively definite for 

𝑡 ≥ 𝑡0  with orbital derivative negatively semi-definite, the solution 𝑥 = 0   is stable in the 

sense of Liapunor. 

Proof:    

 

 In the nbd. of 𝑥 = 0   we have for the certain R>0 and  𝑥  < 𝑅, V 𝑥 , 𝑡 ≥ w(𝑥 ) is 

defined and continuous in D, w 0   = 0 and 𝐿𝑡  is the orbital derivative of V. 

 Consider the spherical shell B, given by 0 < 𝑟 ≤  𝑥  < 𝑅 and put 

𝑚 = min𝑥 ∈𝐵 w 𝑥  . Consider now a nbd 𝛿 of 𝑥 = 0   with the property that if 𝑥 ∈ 𝛿, V 𝑥 , 𝑡 <

𝑚. Since V 𝑥 , 𝑡  is continuous and +𝑣𝑒𝑙𝑦 definitely with V 0  , 𝑡 = 0, such a nbd exists. The 

solution in 𝛿 at 𝑡 = 𝑡0 , the solution can never enter B as we have for 𝑡 ≥ 𝑡0. 

                V(𝑥  𝑡 , 𝑡) − 𝑉(𝑥  𝑡0 , 𝑡0)=  𝐿𝜏
𝑡

𝑡0
𝑉 𝑥  𝜏 , 𝜏 𝑑𝜏 ≤ 0. 

 In other words, the functionV 𝑥 , 𝑡  can not increase alone a solution and this would 

be necessary to enter B as initially 𝑉(𝑥  𝑡0 , 𝑡0)<m. 

We can repeat the argument for arbitrarily small R from which follows the stability. 
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Theorem-15.2: Second Theorem of Liapunov: 

 Consider the equation 𝑥  = 𝑓  𝑥 , 𝑡  with  𝑓  0  , 𝑡 = 0  , 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , 𝑡 ≥ 𝑡0 . If a 

Liapunor function V 𝑥 , 𝑡 can be found defined in a nbd of 𝑥 = 0   which for 𝑡 ≥ 𝑡0 is +𝑣𝑒𝑙𝑦 

definite in this nbd with −𝑣𝑒𝑙𝑦 definite orbital derivative, the solution 𝑥 = 0   is 

asymptotically stable. 

Proof:  

 In the nbd𝑥 = 0  , we have 𝑅 > 0 𝑎𝑛𝑑  𝑥  < 𝑅, V 𝑥 , 𝑡 ≥ w 𝑥  > 0, 𝑥 ≠ 0   , 𝑡 ≥

𝑡0and 𝐿𝑡𝑉 < 0. 

where w 𝑥   is defined and continuous in D, w 0   = 0and 𝐿𝑡  is a orbital derivative of V. 

 It follows from theorem-15.1 that 𝑥 = 0   is stable solution. Suppose that there is a 

solution 𝑥 (𝑡) and a constant a>0 such that   𝑥 (𝑡) ≥ 𝑎 𝑓𝑜𝑟 𝑡 ≥ 𝑡0, when arbitrarily close to 

zero. The solution remains in the spherical shell B: 𝑎 ≤  𝑥  𝑡  ≤ 𝑅, 𝑡 ≥ 𝑡0, we have 

𝐿𝑡𝑉 < −𝜇, 𝜇 > 0. 

∴V 𝑥 (𝑡), 𝑡 − V 𝑥  𝑡0 , 𝑡0 =  𝐿𝜏
𝑡

𝑡0
𝑉 𝑥  𝜏 , 𝜏 𝑑𝜏 

  < −𝜇(𝑡 − 𝑡0) 

 On the other hand, we know that V 𝑥 , 𝑡  is +𝑣𝑒𝑙𝑦 definite, where as from the above 

V 𝑥 , 𝑡 becomes −𝑣𝑒 after sometime. This is a contradiction. Hence the solution 𝑥 = 0   is 

asymptotically stable. 

Note: A function V 𝑥 , 𝑡 satisfying theorem-15.1 is called weak Liapunor function and that 

which satisfies theorem-15.2 is known as strong Liapunov function. 

Theorem-15.3: Third Theorem of Liapunov:  

 Consider the equation 𝑥  = 𝑓  𝑥 , 𝑡  with  𝑓  0  , 𝑡 = 0  , 𝑥 ∈ 𝐷 ⊂ 𝑅𝑛 , 𝑡 ≥ 𝑡0 . If there 

exists a Liapunor function V 𝑥 , 𝑡 in a nbd of 𝑥 = 0  such that: 

(a) V 𝑥 , 𝑡 → 0 𝑎𝑠  𝑥  → 0 uniformly in t. 

(b) 𝐿𝑡𝑉 is +𝑣𝑒𝑙𝑦 definite in the nbd of 𝑥 = 0  . 

(c) 𝐹𝑟om the certain nbd of 𝑡 = 𝑡1 ≥ 𝑡0, V 𝑥 , 𝑡 takes +𝑣𝑒 values in each sufficiently 

small nbd of 𝑥 = 0  . 

Then the trivial solution 𝑥 = 0   is unstable. 
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Proof: 

 For certain +𝑣𝑒 constant aand b , we have with 𝑥 ≠ 0   and  𝑥  ≤ 𝑎 and 𝐿𝑡𝑉 𝑥 , 𝑡 ≥

𝑤 𝑥  > 0 𝑏𝑦  𝑏  , where 𝑤 𝑥   defined and continuous in D, 𝑤 0   = 0. 

 If possible suppose that 𝑥 = 0   is a stable solution. Then there exists an 𝜖 > 0 with 

 𝑥 0 ≤ 𝜖, we have 𝑥 (𝑡) ≤ 𝑎 𝑓𝑜𝑟 𝑡 ≥ 𝑡1. 

 Using assumption (c), we can choose 𝑥 0 such that 𝑉 𝑥0     , 𝑡1 > 0. We find the solution 

𝑥 (𝑡) which start in 𝑥 0 at 𝑡 = 𝑡1. 

V 𝑥 (𝑡), 𝑡 − V 𝑥 0, 𝑡1 =  𝐿𝜏

𝑡

𝑡1

𝑉 𝑥  𝜏 , 𝜏 𝑑𝜏 > 0. 

 So, 𝑉 𝑥 , 𝑡  is non-decreasing. Consider now the set of points 𝑥  with the property 

that 𝑉 𝑥 , 𝑡 ≥ 𝑉 𝑥0     , 𝑡1  and  𝑥  ≤ 𝑎. This set is contained in the spherical shell 𝐵1(say) 

given by 0 < 𝑟 ≤  𝑥  ≤ 𝑎. 

Let, 𝜇 = 𝑖𝑛𝑓𝑤 𝑥  > 0 

∴ V 𝑥  𝑡 , 𝑡 − V 𝑥 0, 𝑡1 ≥ 𝜇 𝑡 − 𝑡1 . 

So, for  𝑥  ≤ 𝑎, 𝑉 𝑥 , 𝑡  becomes arbitrarily large which is a contradiction. Hence the 

solution 𝑥 = 0   is unstable. 

Note: 

(1) Theorem (15.1)−(15.3) are also the true for autonomous equation 𝑥  = 𝑓  𝑥   and 

the fields are analogous. 

(2) Let, the solution 𝑥 = 0   of the autonomous system 𝑥  = 𝑓  𝑥   be asymptotically 

stable. A set of points 𝑥 0 with the property that for the solution of  𝑥  =

𝑓  𝑥  ,𝑥  𝑡 = 𝑥 0, we have  

𝑥  𝑡 → 0   as 𝑡 → ∞ is called the domain of attraction of 𝑥 = 0  . 

Theorem-15.4:Floequet′s Theorem: 

Consider the equation 𝑥  = 𝐴 𝑡 𝑥 , 𝑡 ∈ 𝑅with A(t) is continuous T-periodic 𝑛𝑥𝑛 

matrix. Then each fundamental matrix 𝜑(𝑡) of this equation can be written as the 

periodic 𝑛𝑥𝑛 matrices in the form 𝜑 𝑡 = P t eβt  with P(t), T-periodic and β, a 

constant 𝑛𝑥𝑛 matrix. 

Proof:The fundamental matrix 𝜑 𝑡  is compound of n-independent solutions and 

so 𝜑 𝑡 + 𝑇  is also fundamental matrix. If we put 𝜏 = 𝑡 + 𝑇. Then  
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𝑑𝑥 

𝑑𝜏
= 𝐴 𝜏 − 𝑇 𝑥 = 𝐴 𝜏 𝑥 . 

𝑆𝑜𝜑(𝜏) i.e., 𝜑(𝑡 + 𝑇) is fundamental matrix. The fundamental matrices 𝜑(𝑡) and 

𝜑(𝑡 + 𝑇) are linearly independent i.e., 𝜑 𝑡 + 𝑇 = 𝜑 𝑡 𝐶 where C  is non-singular 

𝑛𝑥𝑛 matrix. There exists a constant matrix 𝛽 such that C = 𝑒𝛽𝑡 . We now proof that 

𝜑 𝑡 𝑒−𝛽𝑡  is T-periodic. Let P(t)= 𝜑 𝑡 𝑒−𝛽𝑡  then 

𝑃 𝑡 + 𝑇 = 𝜑 𝑡 + 𝑇 𝑒−𝛽(𝑡+𝑇) 

= 𝜑 𝑡 𝐶𝑒−𝛽𝑡 𝑒−𝛽𝑇  

= 𝜑 𝑡 𝐼𝑒−𝛽𝑡  

= 𝜑 𝑡 𝑒−𝛽𝑡  

= 𝑃(𝑡) 

Thus, P(t) and 𝜑 𝑡 𝑒−𝛽𝑡  is T-periodic. 

15.2 Stability and Liapunov Functions: 

In this section we discuss the stability of the equilibrium points of the nonlinear system 

𝑥 = 𝐟(𝐱)       (15.2) 

The stability of any hyperbolic equilibrium point 𝐱0 of (15.2) is determined by the signs of 

the real parts of the eigenvalues 𝜆𝑗  of the matrix 𝐷𝐟 𝐱0 . A hyperbolic equilibrium point 𝑥0 is 

asymptotically stable iff Re⁡ 𝜆𝑗 < 0 for 𝑗 = 1, … , 𝑛; i.e., iff 𝐱0 is a sink. And a hyperbolic 

equilibrium point 𝐱0 is unstable iff it is either a source or a saddle. The stability of 

nonhyperbolic equilibrium points is typically more difficult to determine. A method, due to 

Liapunov, that is very useful for deciding the stability of nonhyperbolic equilibrium points is 

presented in this section.  

Definition 1. Let 𝜙𝑡  denote the flow of the differential equation (15.2) defined for all 𝑡 ∈ 𝐑. 

An equilibrium point 𝑥0 of (15.2) is stable if for all 𝜀 > 0 there exists a 𝛿 > 0 such that for 

all x ∈ 𝑁𝛿 x0  and 𝑡 ≥ 0 we have 

𝜙𝑡(𝐱) ∈ 𝑁𝑒 𝐱0 = 

The equilibrium point x0 is unstable if it is not stable. And x0 is asymptotically stable if it is 

stable and if there exists a 𝛿 > 0 such that for all 𝐱 ∈ 𝑁𝛿 𝐱0  we have 

lim
𝑡→∞

 𝜙𝑡(𝐱) = 𝐱0 

Note that the above limit being satisfied for all 𝐱 in some neighborhood of x0 does not imply 

that x0 is stable. It can be seen from the phase portraits that a stable node or focus of a linear 

system in R2 is an asymptotically stable equilibrium point; an unstable node or focus or a 
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saddle of a linear system in 𝐑2 is an unstable equilibrium point; and a center of a linear 

system in 𝐑2 is a stable equilibrium point which is not asymptotically stable. 

It follows from the Stable Manifold Theorem and the Hartman-Grobman Theorem that any 

sink of (15.2) is asymptotically stable and any source or saddle of (15.2) is unstable. Hence, 

any hyperbolic equilibrium point of (15.2) is either asymptotically stable or unstable. The 

corollary provides even more information concerning the local behavior of solutions near a 

sink: 

Theorem 15.5. If 𝑥0 is a sink of the nonlinear system (15.2) and Re⁡ 𝜆𝑗  < −𝛼 < 0 for all of 

the eigenvalues 𝜆𝑗  of the matrix 𝐷𝐟 𝐱0 , then given 𝜀 > 0 there exists a 𝛿 > 0 such that for 

all 𝐱 ∈ 𝑁𝛿 𝐱0 , the flow 𝜙𝑡(𝐱) of (1) satisfies 

 𝜙𝑡(𝐱) − x0 ≤ 𝜀𝑒−𝛼𝑡  

for all 𝑡 ≥ 0. 

Since hyperbolic equilibrium points are either asymptotically stable or unstable, the only time 

that an equilibrium point 𝑥0 of (15.2) can be stable but not asymptotically stable is when 

𝐷f x0  has a zero eigenvalue or a pair of complex-conjugate, pure-imaginary eigenvalues 

𝜆 = ±𝑖𝑏. It follows from the next theorem, proved in [H/S], that all other eigenvalues 𝜆𝑗  of 

𝐷𝐟 𝐱0  must satisfy Re⁡ 𝜆𝑗 ≤ 0 if 𝐱0 is stable. 

Theorem 15.6. If x0 is a stable equilibrium point of (15.2), no eigenvalue of Df  𝐱0  has 

positive real part. 

We see that stable equilibrium points which are not asymptotically stable can only occur at 

nonhyperbolic equilibrium points. But the question as to whether a nonhyperbolic 

equilibrium point is stable, asymptotically stable or unstable is a delicate question. 

The following method, due to Liapunov (in his 1892 doctoral thesis), is very useful in 

answering this question. 

Definition 2. If 𝐟 ∈ 𝐶1(𝐸), 𝑉 ∈ 𝐶1(𝐸) and 𝜙𝑡  is the flow of the differential equation (15.2), 

then for 𝐱 ∈ 𝐸 the derivative of the function 𝑉(𝑥) along the solution 𝜙𝑡(𝐱) 

𝑉 (𝐱) =  𝑑

𝑑𝑡
𝑉 𝜙𝑡(𝐱)  

t=0
= 𝐷𝑉(𝐱)f(𝐱) 

The last equality follows from the chain rule. If 𝑉 (𝐱) is negative in 𝐸 then 𝑉(𝐱) decreases 

along the solution 𝜙𝑡 𝐱0  through x0 ∈ 𝐸 at 𝑡 = 0. Furthermore, in R2, if 𝑉 (x) ≤ 0 with 

equality only at x = 0, then for small positive 𝐶, the family of curves 𝑉(𝐱) = 𝐶 constitutes a 

family of closed curves enclosing the origin and the trajectories of (1) cross these curves from 

their exterior to their interior with increasing 𝑡; i.e., the origin of (1) is asymptotically stable. 

A function 𝑉: 𝐑𝑛 → 𝐑 satisfying the hypotheses of the next theorem is called a Liapunov 

function. 
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Theorem 15.7. Let 𝐸 be an open subset of 𝐑𝑛  containing 𝐱0. Suppose that f ∈ 𝐶1(𝐸) and 

that 𝐟 𝐱0 = 0. Suppose further that there exists a real valued function 𝑉 ∈ 𝐶1(𝐸) satisfying 

𝑉 𝐱0 = 0 and 𝑉(𝐱) > 0 if 𝐱 ≠ 𝐱0. Then (a) if 𝑉 (𝐱) ≤ 0 for all 𝐱 ∈ 𝐸, x0 is stable; (b) if 

𝑉 (𝐱) < 0 for all 𝐱 ∈ 𝐸 ∼  𝑥0 , 𝑥0 is asymptotically stable; (c) if 𝑉 (𝐱) > 0 for all 𝐱 ∈ 𝐸 ∼

 x0 , x0 is unstable. 

Proof. Without loss of generality, we shall assume that the equilibrium point x0 = 0. (a) 

Choose 𝜀 > 0 sufficiently small that 𝑁𝑐(0)        ⊂ 𝐸 and let 𝑚𝜀  be the minimum of the 

continuous function 𝑉(𝐱) on the compact set 

𝑆𝜀 =  𝐱 ∈ 𝐑𝑛 ||𝐱 ∣= 𝜀 . 

Then since 𝑉(𝐱) > 0 for 𝐱 ≠ 0, it follows that 𝑚8 > 0. Since 𝑉(𝐱) is continuous and 

𝑉(0) = 0, it follows that there exists a 𝛿 > 0 such that |𝐱| < 𝛿 implies that 𝑉(𝐱) < 𝑚𝜀 . 

Since 𝑉 (𝐱) ≤ 0 for 𝐱 ∈ 𝐸, , it follows that 𝑉(x) is decreasing along trajectories of (1). Thus, 

if 𝜙𝑡  is the flow of the differential equation (1), it follows that for all x0 ∈ 𝑁𝛿(0) and 𝑡 ≥ 0 

we have 

𝑉 𝜙𝑡 x0  ≤ 𝑉 x0 < 𝑚𝜀 . 

Now suppose that for  𝐱0 < 𝛿 there is a 𝑡1 > 0 such that  𝜙t1
 x0  = 𝜀; i.e., such that 

𝜙𝑡1
 𝐱0 ∈ 𝑆𝜀 . Then since 𝑚𝜀  is the minimum of 𝑉(𝐱) on 𝑆𝑐 , this would imply that 

𝑉  𝜙𝑡1
 𝐱0  ≥ 𝑚𝑒  

which contradicts the above inequality. Thus for  𝐱0 < 𝛿 and 𝑡 ≥ 0 it follows that 

 𝜙𝑡 x0  < 𝜀𝑖  i.e., 0 is a stable equilibrium point. 

 

(b) Suppose that 𝑉(𝑥) < 0 for all 𝑥 ∈ 𝐸. Then 𝑉(𝑥) is strictly decreasing along trajectories of 

(1). Let 𝜙𝑡  be the flow of (1) and let 𝑥0 ∈ 𝑁𝛿(0), the neighborhood defined in part (a). Then, 

by part (a), if  x0 < 𝛿, 𝜙𝑡 x0 ⊂ 𝑁𝑐(0) for all 𝑡 ≥ 0. Let  𝑡𝑘  be any sequence with 𝑡𝑘 → ∞. 

Then since 𝑁𝑐(0)         is compact, there is a subsequence of  𝜙𝑡𝑘
 x0   that converges to a point in 

𝑁𝜀(0)        . But for any subsequence  𝑡𝑛   of  𝑡𝑘  such that  𝜙𝑡𝑛
 𝑥0   converges, we show below 
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that the limit is zero. It then follows that 𝜙𝑡𝑘
 𝑥0 → 0 for any sequence 𝑡𝑘 → ∞ and therefore 

that 𝜙𝑡 𝑥0 → 0 as 𝑡 → ∞; i.e., that 0 is asymptotically stable. It remains to show that if 

𝜙𝑡𝑛
 𝐱0 → 𝐲0, then 𝐲0 = 0. Since 𝑉(x) is strictly decressing along trajectories of (1) and 

since 𝑉  𝜙𝑡𝑥
 𝐱0  → 𝑉 𝐲0  by the continuity of 𝑉, it follows that 

𝑉 𝜙t x0  > 𝑉 y0  

for all 𝑡 > 0. But if 𝐲0 ≠ 0, then for 𝑠 > 0 we have 𝑉 𝜙𝑠 𝐲0  < 𝑉 𝐲0  and, by continuity, it 

follows that for all 𝐲 sufficiently close to 𝐲0 we have 𝑉 𝜙𝑠(𝐲) < 𝑉 𝐲0  for 𝑠 > 0. But then 

for 𝐲 = 𝜙𝑡𝑛
 𝐱0  and 𝑛 sufficiently large, we have 

𝑉  𝜙𝑠+t𝑛
 𝐱0  < 𝑉 𝐲0  

which contradicts the above inequality. Therefore 𝐲0 = 𝟎 and it follows that 0 is 

asymptotically stable. 

 

(c) Let 𝑀 be the maximum of the continuous function 𝑉(𝐱) on the compact set 𝑁8(0)        . Since 

𝑉 (x) > 0, 𝑉(x) is strictly increasing along trajectories of (1). Thus, if 𝜙𝑡  is the flow of (1), 

then for any 𝛿 > 0 and x0 ∈ 𝑁𝛿(0) ∼ {0} we have 

𝑉 𝜙𝑡 x0  > 𝑉 x0 > 0 

for all 𝑡 > 0. And since 𝑉 (𝐱) is positive definite, this last statement implies that 

inf
𝑡≥0

 𝑉  𝜙𝑡 x0  = 𝑚 > 0. 

Thus, 

𝑉 𝜙𝑡 𝐱0  − 𝑉 𝐱0 ≥ 𝑚𝑡 

for all 𝑡 ≥ 0. Therefore, 

𝑉 𝜙𝑡 𝐱0  > 𝑚𝑡 > 𝑀 

for 𝑡 sufficiently large; i.e., 𝜙𝑡 𝐱0  lies outside the closed set 𝑁𝑒(0)        . Hence, 0 is unstable. 

Remark. If 𝑉 (𝐱) = 0 for all 𝐱 ∈ 𝐸 then the trajectories of (1) lie on the surfaces in 𝐑𝑛  (or 

curves in 𝐑2 ) defined by 
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𝑉(𝐱) = 𝑐. 

 

Example 15.1. Consider the system 

𝑥 1 = −𝑥2
3

𝑥 2 = 𝑥1
3.

 

The origin is a nonhyperbolic equilibrium point of this system and 

𝑉(𝐱) = 𝑥1
4 + 𝑥2

4 

is a Liapunov function for this system. In fact 

𝑉 (𝐱) = 4𝑥1
3𝑥 1 + 4𝑥2

3𝑥 2 = 0. 

Hence the solution curves lie on the closed curves 

𝑥1
4 + 𝑥2

4 = 𝑐2 

which encircle the origin. The origin is thus a stable equilibrium point of this system which is 

not asymptotically stable. Note that 𝐷𝑓(0) = 0 for this example; i.e., 𝐷𝑓(0) has two zero 

eigenvalues. 

 

Example 15.2. Consider the system 

𝑥 1 = −2𝑥2 + 𝑥2𝑥3

𝑥 2 = 𝑥1 − 𝑥1𝑥3

𝑥 3 = 𝑥1𝑥2.

 

The origin is an equilibrium point for this system and 

𝐷𝑓(0) =  
0 −2 0
1 0 0
0 0 0

 .  

Thus 𝐷𝑓(0) has eigenvalues 𝜆1 = 0, 𝜆2,3 = ±2𝑖; i.e., 𝑥 = 0 is a nonhyperbolic equilibrium 

point. So we use Liapunov's method. But how do we find a suitable Liapunov function? A 

function of the form 

𝑉(𝑥) = 𝑐1𝑥1
2 + 𝑐2𝑥2

2 + 𝑐3𝑥3
2 

with positive constants 𝑐1, 𝑐2 and 𝑐3 is usually worth a try, at least when the system contains 

some linear terms. Computing 𝑉 (x) = 𝐷𝑉(𝐱)f(x), we find 
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1

2
𝑉 (𝐱) =  𝑐1 − 𝑐2 + 𝑐3 𝑥1𝑥2𝑥3 +  −2𝑐1 + 𝑐2 𝑥1𝑥2. 

Hence if 𝑐2 = 2𝑐1 and 𝑐3 = 𝑐1 > 0 we have 𝑉(𝑥) > 0 for 𝐱 ≠ 0 and 𝑉 (x) = 0 for all 𝐱 ∈ 𝐑3 

and therefore by Theorem 3, x = 0 is stable. Furthermore, choosing 𝑐1 = 𝑐3 = 1 and 𝑐2 = 2, 

we see that the trajectories of this system lie on the ellipsoids 𝑥1
2 + 2𝑥2

2 + 𝑥3
2 = 𝑐2. 

We commented earlier that all sinks are asymptotically stable. However, as the next example 

shows, not all asymptotically stable equilibrium points are sinks. (Of course, a hyperbolic 

equilibrium point is asymptotically stable iff it is a sink.) 

Example 15.3. Consider the following modification of the system in Example 2. 

𝑥 1 = −2𝑥2 + 𝑥2𝑥3 − 𝑥1
3

𝑥 2 = 𝑥1 − 𝑥1𝑥3 − 𝑥2
3

𝑥 3 = 𝑥1𝑥2 − 𝑥3
3.

 

The Liapunov function of Example 2, 

𝑉(𝐱) = 𝑥1
2 + 2𝑥2

2 + 𝑥3
2 

satisfies 𝑉(𝐱) > 0 and 

𝑉 (𝐱) = −2 𝑥1
4 + 2𝑥2

4 + 𝑥3
4 < 0 

for 𝐱 ≠ 𝟎. Therefore, by Theorem 3 , the origin is asymptotically stable, but it is not a sink 

since the eigenvalues 𝜆1 = 0, 𝜆2,3 = ±2𝑖 do not have negative real part. 

Example 4. Consider the second-order differential equation 

𝑥 + 𝑞(𝑥) = 0 

where the continuous function 𝑞(𝑥) satisfies 𝑥𝑞(𝑥) > 0 for 𝑥 ≠ 0. This differential equation 

can be written as the system 

𝑥 1 = 𝑥2

𝑥 2 = −𝑞 𝑥1 
 

where 𝑥1 = 𝑥. The total energy of the system 

𝑉(𝐱) =
𝑥2

2

2
+   

𝑥1

0

𝑞(𝑠)𝑑𝑠 

(which is the sum of the kinetic energy 
1

2
𝑥 1

2 and the potential energy) serves as a Liapunov 

function for this system. 

𝑉 (𝐱) = 𝑞 𝑥1 𝑥2 + 𝑥2 −𝑞 𝑥1  = 0. 

125



 

The solution curves are given by 𝑉(𝐱) = 𝑐; i.e., the energy is constant on the solution curves 

or trajectories of this system; and the origin is a stable equilibrium point. 

 

Example 15.4:Consider the system  

 𝑥 = 𝑎 𝑡 𝑦 + 𝑏 𝑡 𝑥 𝑥2 + 𝑦2  

𝑦 = −𝑎 𝑡 𝑥 + 𝑏 𝑡 𝑦 𝑥2 + 𝑦2 . 

where the function a(t) and b(t) are continuous for 𝑡 ≥ 𝑡0. Show that the trivial 

solution(0,0) is stable if b(t)≤ 0 and unstable if b(t)> 0 for 𝑡 ≥ 𝑡0 . 

Solution:  

 Take V(x,y)=  𝑥2 + 𝑦2  as a Liapunor function.  

Then, 𝐿𝑡𝑉 = 2𝑏 𝑡  𝑥2 + 𝑦2 2 . 

Thus  V is +𝑣𝑒𝑙𝑦 definite and 𝐿𝑡𝑉 ≤ 0 if b(t)≤ 0 and 𝐿𝑡𝑉 > 0 if b(t)> 0. Hence, by 

theorem (15.1), the zero solution is stable if b(t)≤ 0 and by theorem (15.3), the zero 

solution is unstable if b(t)>0. 

Example 15.5: Consider the equation for the non-linear oscillator with linear damping 

𝑥 + 𝜇𝑥 + 𝑥 + 𝑎𝑥2 + 𝑏𝑥3 = 0 

where 𝜇, 𝑎 𝑎𝑛𝑑 𝑏 are constant and 𝜇 > 0. 

Solution:   

 We now introduce the energy of the non-linear oscillator without damping by 

                             V(x, 𝑥 )= 
1

2
𝑥2 +

1

2
𝑥2 + 𝑎𝑥3 +

1

4
𝑏𝑥4. 

 We can find a nbd D of (0,0)dependent in size on a and b in which V is +𝑣𝑒𝑙𝑦 

definite. Further more 

𝐿𝑡𝑉 = 𝑥 𝑥 + 𝑥𝑥 + 𝑎𝑥2𝑥 + 𝑏𝑥3𝑥 = −𝜇𝑥 2. 

Application of theorem (15.1) shows that the solution (0,0) is Liapunor stable. 

Example 15.6: 

(i) Determined the stability of the zero solution of the system 𝑥 = 2𝑥𝑦 + 𝑥3, 𝑦 =

𝑥2 − 𝑦5. 

Hint:V = x2 − 2𝑦2, 𝐿𝑡𝑉 = 2𝑥4 + 4𝑦6, 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒.  
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(ii) Determine the stability of the trivial solution of 𝑥 = 𝑥𝑦2 −
1

2
𝑥3, 𝑦 = −

1

2
𝑦3 +

1

5
𝑥2𝑦. 

Hint: Asymptotically stable, V(x,y)= 𝑥2 + 2𝑦2. 

Example-15.7:Determine the stability of the zero solution of the system 𝑥1 = −𝑥2
3;  𝑥2 =

𝑥1
3. 

Solution: 

 The origin is equilibrium point of this system 

𝑑𝑥1

𝑑𝑥2
=

𝑥1 

𝑥2 
= −

𝑥2
3

𝑥1
3. 

⇒ 𝑥1
3𝑑𝑥1 + 𝑥2

3𝑑𝑥2 = 0. 

⇒ 𝑥1
4 + 𝑥2

4 = 𝑐. 

Hence V(x)=𝑥1
4 + 𝑥2

4 is a Liapunor function. In fact V(x)= 4𝑥1
3𝑥1 + 4𝑥2

3𝑥2 = 0. 

Hence the solution curves 𝑥1
4 + 𝑥2

4 = 𝑐2  which encircle of the origin. The origin thus 

stable equilibrium point of the system which is not asymptotically stable. 

 Then,      𝐿𝑡𝑉 =
𝜕𝑉

𝜕𝑡
+

𝜕𝑉

𝜕𝑥1     
𝑥1 +

𝜕𝑉

𝜕𝑥2     
𝑥2  

= 4𝑥1
3𝑥1 + 4𝑥2

3𝑥2 + 4𝑥1
3𝑥1 + 4𝑥2

3𝑥2 = 8𝑥1
3 −𝑥2

3 + 8𝑥2
3 𝑥1

3 = 0. 

Note that Df(0) = 0 for this example i.e., Df(0) has two zero eigen values. 

 

 

 

 

 

 

 

 

 

 

127



 

 

 

Exercises:  

1. Use the Liapunov function 𝑉(𝐱) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 to show that the origin is an 

asymptotically stable equilibrium point of the system 

𝐱 =  

−𝑥2 − 𝑥1𝑥2
2 + 𝑥3

2 − 𝑥1
3

𝑥1 + 𝑥3
3 − 𝑥2

3

−𝑥1𝑥3 − 𝑥3𝑥1
2 − 𝑥2𝑥3

2 − 𝑥3
5

 .  

Show that the trajectories of the linearized system x = 𝐷f(0)x for this problem lie on 

circles in planes parallel to the 𝑥1, 𝑥2 plane; hence, the origin is stable, but not 

asymptotically stable for the linearized system. 

2. It was shown the origin is a center for the linear system 

𝑥 =  
0 −1
1 0

 𝐱.  

The addition of nonlinear terms to the right-hand side of this linear system changes the 

stability of the origin. Use the Liapunov function 𝑉(𝐱) = 𝑥1
2 + 𝑥2

2 to establish the following 

results: 

(a) The origin is an asymptotically stable equilibrium point of 

x =  
0 −1
1 0

 𝐱 +  
−𝑥1

3 − 𝑥1𝑥2
2

−𝑥2
3 − 𝑥2𝑥1

2 . 

(b) The origin is an unstable equilibrium point of 

x =  
0 −1
1 0

 𝐱 +  
𝑥1

3 + 𝑥1𝑥2
2

𝑥2
3 + 𝑥2𝑥1

2 . 

(c) The origin is a stable equilibrium point which is not asymptotically stable for 

𝐱 =  
0 −1
1 0

 𝐱 +  
−𝑥1𝑥2

𝑥1
2   

What are the solution curves in this case? 

5. Use appropriate Liapunov functions to determine the stability of the equilibrium points of 

the following systems: 

(a) 𝑥 1 = −𝑥1 + 𝑥2 + 𝑥1𝑥2 

(a) 𝑥 2 = 𝑥1 − 𝑥2 − 𝑥1
2 − 𝑥2

3 

(b) 𝑥 1 = 𝑥1 − 3𝑥2 + 𝑥1
3𝑥 2 = −𝑥1 + 𝑥2 − 𝑥2

2 
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UNIT-16 

 

 

Solutions of nonlinear differential equations by perturbation method: Secular term. 

Nonlinear damping. 

 

 

16.1:Perturbation Method: Secular Term: 

 One of the important method for solving non-linear differential equation is the 

perturbation method. The method is applicable of two equations in which small parameter is 

associated with the non-linear terms. In application, we develop the desired quantities in 

powers of small parameters multiplied by coefficients which one function of independent 

variables; we then determine the coefficients one by one usually by solving a sequence of 

linear equations. 

 Let us consider the differential of the type  

𝑥 + 𝑥 + 𝜇𝑓 𝑥, 𝑥 , 𝑡 = 0……………………………...(16.1) 

where 𝑓 𝑥, 𝑥 , 𝑡  is a analytic function of 𝑥, 𝑥 , 𝑡 and periodic in t period of 𝜇 is a small 

parameter. The solution of (5.1) will be sought in the form of a series   

𝑥 𝑡 = 𝑥0 𝑡 + 𝜇𝑥1 𝑡 + 𝜇2𝑥2 𝑡 + ⋯                        …………….(16.2) 

By proceeding in this way we often a series difficulty in the form of series is called 

secular term i.e., the term which grows up indefinitely as 𝑡 → ∞ and thus destroy the 

convergence of the series solution. 

As an example of the appearance of the secular term we consider the equation 

𝑥 + 𝑥 + 𝜇𝑥3 = 0, 0 < 𝜇 ≪ 1     ………………………..(16.3) 

Let the conditions are  

𝑥 0 = 𝐴, 𝑥  0 = 0     …………………………………..(16.4) 

Substituting (16.2) in (16.3) and equating the coefficients of the successive powers of 

𝜇 to zero. We get the following sequence of linear differential equation 
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𝑥0 + 𝑥0 = 0 

𝑥1 + 𝑥1 = −𝑥0
3     ……………….(16.5) 

and the condition (16.4) gives 

𝑥0 0 = 𝐴, 𝑥𝑖 0 = 0, 𝑥0  0 = 0, 𝑥𝑖  0 = 0 (𝑓𝑜𝑟 𝑖 = 1, 2, … )  ………..(16.6) 

By virtue of this conditions, the first of equation (16.5) gives 

𝑥0 = 𝐴𝑐𝑜𝑠𝑡 

Hence the second equation of (16.5) becomes 

𝑥1 + 𝑥1 = −𝐴3 cos3 𝑡 

𝑖. 𝑒. , 𝑥1 + 𝑥1 = −
1

4
𝐴3(3𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑠3𝑡) 

whose solution is  

3 1
𝑥1 = − 𝐴3𝑡𝑠𝑖𝑛𝑡 − 𝐴3(3𝑐𝑜𝑠𝑡 − 𝑐𝑜𝑠3𝑡) 

8 32

 Here the first term is secular term which contains t. The appearance of secular term in 

this case may be explained as follows: 

 When 𝜇 = 0, the solution is periodic with periodic 2𝜋. However due to the presence 

of the non-linear term 𝜇𝑥3 in equation (16.3), the solution for 𝜇 ≠ 0 may not be periodic with 

the same period. Since the period of generating solution 𝑥0 = 𝐴𝑐𝑜𝑠𝑡 is 2𝜋, the subsequent 

term in (16.2) must take care of this variation in the period, this resulting appearance of the 

secular terms.   

16.2: Application of Perturbation method for Obtaining Periodic Solutions of Some 

Non-Linear Differential Equations:  

I. Autonomous System: 

 Consider the differential equation 

𝑑2𝑥 𝑑𝑥

𝑑𝑡2 + 𝑥 = 𝜇𝑓(𝑥, )    ……………………..(16.7) 
𝑑𝑡

𝑑𝑥
where 𝜇 is a non-dimensional parameter assume to be small. We also assume that 𝑓(𝑥, ) is 

𝑑𝑡
𝑑𝑥

a polynomial in x and . When 𝜇 = 0, the periodic solution (16.7) is readily obtained as a 
𝑑𝑡

linear combination of sent and cost of period 2𝜋. But 𝜇 ≠ 0, the frequency of periodic 

solution becomes unknown; accordingly, we replace the independent variable t by 𝜏 = 𝜔𝑡 

where 𝜔 is a unknown frequency of the periodic solution. It is clear that the variable of x is of 

period 2𝜋 in 𝜏. Putting 𝜏 = 𝜔𝑡 in (16.7) we get 

𝜔2𝑥 + 𝑥 = 𝜇𝑓(𝑥, 𝜔𝑥) 
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where 𝑥 =
𝑑𝑥

𝑑𝜏
 𝑎𝑛𝑑 𝑥 =

𝑑2𝑥

𝑑𝜏2  . 

 Let the solution x(𝜏) of (16.8) develop in a power series w.r.t the small parameter 𝜇, 

the coefficients in the series being periodic function in 𝜏. So, we write 

𝑥 𝜏 = 𝑥0 𝜏 + 𝜇𝑥1 𝜏 + 𝜇2𝑥2 𝜏 +               …………………(16.9) 

           The 𝑥𝑖 𝜏 , (𝑖 = 1,2, … ) be periodic function of 𝜏 of period 2𝜋. It addition, it is also 

necessary to develop the unknown quantity 𝜔 w.r.t 𝜇  i.e.,  

𝜔 = 𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯                        …………….(16.10) 

We now substitute (16.9) and (16.10) into  (16.8) and the equate the coefficients of 

like of 𝜇. Then we obtain the sequence of second order linear differential equations in 𝑥𝑖(𝜏) 

which also evolve the unknown quantities 𝜔𝑖 . Since only the periodic solution is under 

consideration and origin of 𝜏 may be chosen arbitrarily 𝑥  𝜏 = 0 𝑎𝑡 𝜏 = 0. This initial 

condition and the condition of periodicity serve to determine the unknown quantities in (16.9) 

and (16.10). 

Explain the above method in details, we take the differential equation 

𝑑2𝑥

𝑑𝑡2 + 𝑥 = 𝜇𝑥3      …………………………..(16.11) 

Putting 𝜏 = 𝜔𝑡, we get  

𝜔2𝑥 + 𝑥 = 𝜇𝑥3 = 0    ……………………(16.12)  

Substituting (16.9) and (16.10) into (16.12) we get 

(𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ )2 𝑥 0 + 𝜇𝑥 1 + 𝜇2𝑥 2 + ⋯ +  𝑥0 + 𝜇𝑥1 + 𝜇2𝑥2 + ⋯ +

𝜇 𝑥0 + 𝜇𝑥1 + 𝜇2𝑥2 + ⋯ 3 = 0. 

Equating like power of 𝜇, we get the following sequence of the linear differential equations: 

𝜇0: 𝜔0
2𝑥 0 + 𝑥0 = 0 …………………..(16.13) 

𝜇1: 𝜔0
2𝑥 1 + 𝑥1 = −2𝜔0𝜔1𝑥 0 − 𝑥0

3.   …………………..(16.14) 

𝜇2: 𝜔0
2𝑥 2 + 𝑥2 =  −2𝜔0𝜔2 + 𝜔1

2 𝑥 0 − 2𝜔0𝜔1𝑥 1 − 3𝑥0
2𝑥1   …………(16.15) 

                 ……..      ………     . ………       …………. 

and so on. 

The initial conditions are given by x(0)=A.𝑥  0 = 0. 

Since,                       𝑥 𝜏 + 2𝜋 = 𝑥 𝜏 , so 𝑥𝑖 𝜏 + 2𝜋 = 𝑥𝑖 𝜏     ……………….(16.16) 

𝑎𝑛𝑑 𝑥0 0 = 𝐴, 𝑥𝑖+1 0 = 0𝑥𝑖  0 = 0, (𝑖 = 0, 1, 2, … )   ………………………..(16.17) 
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Solving (16.13) we get by using the above condition 

𝑥0 = 𝐴𝑐𝑜𝑠 𝜏, 𝜔0 = 1.      ……………….(16.18) 

This zero order solution is called governing or generating solution. 

Using (16.18), equation (16.14)leads to  

𝑥 1 + 𝑥1 =  2𝜔1 −
3

4
𝐴2 𝐴𝑐𝑜𝑠𝜏 −

1

4
𝐴3𝑐𝑜𝑠3𝜏     …………………….(16.19) 

 The first term of right hand side is the secular term and so we must put 𝜔1 =
3

8
𝐴2(if A 

= 0, then the generating solution and so all other solution are trivial). 

 By virtue of the condition (16.17), the solution of (16.19) is given by 

𝑥1 =
1

32
𝐴3 − (𝑐𝑜𝑠𝜏 + 𝑐𝑜𝑠3𝜏)  …………………(16.20) 

In similar way we obtained 

𝜔2 = −
21

256
𝐴4 , 𝑥2 =

23

1024
𝐴5𝑐𝑜𝑠𝜏 −

3

128
𝐴5 cos3 𝜏 +

1

1024
𝐴5𝑐𝑜𝑠5𝜏    ………….(16.21) 

 From (16.9), (16.18), (16.20) and (16.21), the solution of (16.11) upto an including 

term to the second order of 𝜇 is given by 

𝑥 𝑡 = (𝐴 −
1

32
𝜇𝐴3 +

23

1024
𝜇2𝐴5 cos 𝜔𝑡 +  

1

32
𝜇𝐴3 −

3

128
𝜇2𝐴5 cos 3𝜔𝑡

+
1

1024
𝜇2𝐴5𝑐𝑜𝑠5𝜔𝑡 + ⋯……… 

                                                                                   ………………………..(16.22) 

Also by using (16.10) and the values of 𝜔𝑖(𝑖 = 0, 1, 2, … ) obtained above, the frequency of 

𝜔 is 

𝜔 = 1 +
3

8
𝜇𝐴2 −

21

256
𝜇2𝐴4 + ⋯                                  ……………(16.23) 

Note:It is to be noted that the frequency of 𝜔 depends on the amplitude A of the oscillation. 

II. Non-Autonomous System: 

Consider the differential equation of the form 

𝑑2𝑥

𝑑𝑡2 + 𝑥 = 𝜇𝑓(𝑥,
𝑑𝑥

𝑑𝑡
, 𝑡)    ……………………..(16.24) 

where 𝜇 is a small parameter and 𝑓(𝑥,
𝑑𝑥

𝑑𝑡
) is a periodic in t with period 2𝜋. Toillustrate the 

perturbation method for obtaining periodic solution of equation (16.24) we rewrite it as 

follows 

𝑑2𝑥

𝑑𝜏2 + 𝑥 = 𝜇𝑓(𝑥,
𝑑𝑥

𝑑𝜏
, 𝜏 + 𝛿)where 𝜏 = 𝑡 − 𝛿.  …………..(16.25) 
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Contrary to the autonomous system, through the frequency of the desired periodic 

solution is known, the phase angle can not be assigned arbitrarily. Further an unknown phase 

angle 𝛿 must be introduced in respect of the initial conditions 

𝑥  𝜏 = 0 𝑎𝑡 𝜏 = 0.    …………………….(16.26) 

In addition to x, it is also necessary to develop 𝛿 with respect to 𝜇, i.e., we have  

𝑥 𝜏 = 𝑥0 𝜏 + 𝜇𝑥1 𝜏 + 𝜇2𝑥2 𝜏 + ⋯                ……………………(16.27) 

𝛿 = 𝛿0 + 𝜇𝛿1 + 𝜇2𝛿2 + ⋯            ……………………………(16.28) 

Then proceeding analogously as for the autonomous system, we determine the 

unknown quantities in the right hand side of (16.27) and (16.28). 

As an example consider the Duffing′s equation with a term of dissipation  

𝑑2𝑥

𝑑𝑡2 + 𝑥 = 𝜇  −𝛼𝑥 − 𝛽𝑥3 − 𝑘
𝑑𝑥

𝑑𝑡
+ 𝐹𝑐𝑜𝑠 𝑡      ……………….(16.29) 

which can be written as  

𝑥 + 𝑥 = 𝜇[−𝛼𝑥 − 𝛽𝑥3 − 𝑘𝑥 + 𝐹𝑐𝑜𝑠 (𝜏 + 𝛿)]    ……………(16.30) 

𝑤𝑕𝑒𝑟𝑒 𝜏 = 𝑡 − 𝛿, 𝑥 =
𝑑𝑥

𝑑𝜏
 𝑎𝑛𝑑 𝑥 =

𝑑2𝑥

𝑑𝜏2 . 

Substituting (16.27) and (16.28) into (16.30) and the equating like powers of 𝜇, we get, 

𝜇0: 𝑥 0 + 𝑥0 = 0   …………………..(16.31) 

𝜇1: 𝑥 1 + 𝑥1 = −𝛼𝑥0 − 𝛽𝑥0
3 − 𝑘𝑥0 + 𝐹𝑐𝑜𝑠 (𝜏 + 𝛿0)   …………………..(16.32) 

𝜇2: 𝑥 2 + 𝑥2 = −𝛼𝑥1 − 3𝛽𝑥0
2𝑥1 − 𝑘𝑥1 − 𝐹𝛿2𝑠𝑖𝑛 (𝜏 + 𝛿1)   …………(16.33) 

                 ……..      ………     . ………       …………. 

and so on. 

The unknown quantities in the above equations are to be determined by thecondition 

𝑥𝑖 𝜏 + 2𝐻 = 𝑥𝑖(𝜏)(𝑓𝑜𝑟 𝑖 = 0, 1, 2, … )    ……………………….(16.34) 

                and 𝑥𝑖  0 = 0. (𝑓𝑜𝑟 𝑖 = 0, 1, 2, … )        …………………………(16.35) 

Solving (16.31) with the condition 𝑥0  0 = 0, we get 

𝑥0 𝜏 = 𝐴0 cos 𝜏      ………………………………………………(16.36) 

Substituting (16.36) into (16.32) we obtained  

𝑥 1 + 𝑥1 = − 𝛼𝐴0 +
3

4
𝛽𝐴0

3 − 𝐹𝑐𝑜𝑠 𝛿0 cos 𝜏 +  𝑘𝐴0 − 𝐹𝑠𝑖𝑛𝛿0 sin 𝜏 −
1

4
𝛽𝐴0

3 cos 3𝜏 

                          ……………………………………(16.37) 
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Periodicity condition for 𝑥1 requires that there will be no regular term and therefore 

𝛼𝐴0 +
3

4
𝛽𝐴0

3 − 𝐹𝑐𝑜𝑠𝛿0 = 0. 

                                                           and  𝑘𝐴0 − 𝐹𝑠𝑖𝑛 𝛿0 = 0.        ……….(16.38) 

The solution of (16.37) is then 

𝑥1 𝜏 = 𝐴1 cos 𝜏 +
1

32
𝛽𝐴0

3 cos 3𝜏    ……………………………(16.39) 

 The amplitude 𝐴1 and phase angle 𝛿1can be obtained by using the periodicity 

condition for 𝑥2(𝜏) by summarizing the above results, the solution x(t) up to an including 

terms of first order in 𝜇 is found to be 

𝑥 𝑡 =  𝐴0 + 𝜇𝐴1 cos 𝑡 − 𝛿0 − 𝜇𝛿1 +
1

32
𝜇𝛽𝐴0

3 𝑡 − 𝛿0 − 𝜇𝛿1    ………(16.40) 

16.3Use perturbation method to obtained solutions of period 2𝜋 and the amplitudefrequency 

relations up to including terms of order 𝜇2 for the following equation 

d2x

dt2 − 𝜇 1 − 𝑥2 
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 𝑉𝑎𝑛𝑑𝑒𝑟 𝑃𝑜𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 , initial condition for problem (i) and (ii) 

are 𝑥 0 = 𝑎, 𝑥  0 = 0. 

Solution: 

 Let 𝜏 = 𝜔𝑡, then the given equation reduces to 

𝜔2𝑥 − 𝜇 1 − 𝑥2 𝜔𝑥 + 𝑥 = 0……………….(1) 

where 𝑥 =
𝑑𝑥

𝑑𝜏
 𝑎𝑛𝑑 𝑥 =

𝑑2𝑥

𝑑𝜏2  

Let,        𝑥 𝜏 = 𝑥0 𝜏 + 𝜇𝑥1 𝜏 + 𝜇2𝑥2 𝜏 + 𝜇3𝑥3 𝜏 + ⋯ 

          and  𝜔 = 𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + 𝜇3𝜔3 + ⋯ 

Substituting this in (1), we get  

(𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ )2 𝑥 0 + 𝜇𝑥 1 + 𝜇2𝑥 2 + ⋯ − 𝜇(𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ ){1 −

 𝑥0 + 𝜇𝑥1 + 𝜇2𝑥2 + ⋯ }(𝑥0 + 𝜇𝑥1 + 𝜇2𝑥2 + 𝜇3𝑥3 + ⋯ ) +  𝑥0 + 𝜇𝑥1 + 𝜇2𝑥2 + ⋯ = 0 

 Equating like power of 𝜇 from both sides, we get 

𝜇0: 𝜔0
2𝑥 0 + 𝑥0 = 0   …………………..(2) 

𝜇1: 𝜔0
2𝑥 1 + 𝑥1 = −2𝜔0𝜔1𝑥 0 − 𝜔0 1 − 𝑥0

2 𝑥 0   …………………..(3) 
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𝜇2: 𝜔0
2𝑥 2 + 𝑥2 =  −2𝜔0𝜔2 + 𝜔1

2 𝑥 0 − 2𝜔0𝜔1𝑥 1 + 𝜔1 1 − 𝑥0
2 𝑥 0 − 2𝜔0𝑥0𝑥1𝑥 0 +

𝜔0 1 − 𝑥0
2 𝑥 1…………………………..…(4) 

𝜇3: 𝜔0
2𝑥 3 + 𝑥3 = −2𝜔0𝜔2𝑥 2 −  𝜔1

2 + 2𝜔0𝜔2 𝑥 1 − 2 𝜔0𝜔3 + 𝜔1𝜔2 𝑥 0
+  1 − 𝑥0

2  𝜔0𝑥 2 + 𝜔1𝑥 1 + 𝜔2𝑥 0 − 2𝑥0𝑥1 𝜔0𝑥 1 + 𝜔1𝑥 0 − 𝜔0𝑥 0(2𝑥0𝑥2

+ 2𝑥1
2) 

                                          …………………………………….(5) 

The periodicity and initial conditions for 𝑥𝑖 𝜏 (𝑖 = 1, 2, … ) are 

𝑥𝑖 𝜏 + 2𝜋 = 𝑥𝑖 𝜏 , 𝑥 𝑖 0 = 0       …………………………(6) 

Solving (2) subject to the periodicity condition 𝑥0 𝜏 + 2𝜋 = 𝑥0 𝜏 𝑎𝑛𝑑 the initial 

condition 𝑥 0 0 = 0, we get 𝑥0 𝜏 = acos 𝜏 , 𝜔0 = 1, where the constant a is to be determine. 

The zero order solution 𝑥0 𝜏  is a generating solution. 

From (3), we have 

𝑥 1 + 𝑥1 = 2𝜏 cos 𝜏 + 𝑎  
𝑎2

4
− 1 sin 𝜏 +

𝑎3

4
sin 3𝜏      ………………..(7) 

 Here the first and second term on the right hand side of (7) are secular term which 

destroyed the convergent of the required solution these we must have 𝑎 = 0, ±2 𝑎𝑛𝑑 𝜔1 = 0. 

Since 𝑎0 = 0 provides amplitude, we must have 𝑎 = 2, 𝜔1 = 0(𝑎 = −2 provides no new 

information as it gives only a solution of opposite phase. Then the equation (7) reduces to 

𝑥 1 + 𝑥1 =
𝑎3

4
sin 3𝜏 = 2 sin 3𝜏. 

whose general solution is  

𝑥1 = 𝑎1 cos 𝜏 + 𝑏1 sin 𝜏 −
1

4
sin 3𝜏 

Since 𝑥 0 0 = 0, we have 𝑏1 =
3

4
 . 

Constant 𝑎1 is to be determined by using equation (4) by putting 𝑥0 𝜏 = 2cos 𝜏 , 𝑥1 =

𝑎1 cos 𝜏 +
3

4
sin 𝜏 −

1

4
sin 3𝜏, 𝜔0 = 1, 𝜔1 = 0, then we have, 

𝑥 2 + 𝑥2 =  4𝜔2 +
1

4
 cos 𝜏 + 2𝑎1 sin 𝜏 −

3

2
cos 3𝜏 + 3𝑎1 sin 3𝜏 +

5

4
sin 5𝜏    ……..(8) 

Eliminating the secular term by putting 

𝜔2 = −
1

16
 𝑎𝑛𝑑 𝑎1 = 0,  we get 

𝑥1 =
3

4
sin 𝜏 −

1

4
𝑠𝑖𝑛3𝜏 and 𝑥 2 + 𝑥2 = −

3

2
cos 3𝜏 +

5

4
sin 5𝜏   whose solution is 
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𝑥2 = 𝑎2 cos 𝜏 + 𝑏2 sin 𝜏 +
3

16
cos 3𝜏 −

5

96
cos 5𝜏 . 

Since 𝑥 2 0 = 0, we have𝑏2 = 0 so that 

𝑥2 = 𝑎2 cos 𝜏 +
3

16
cos 3𝜏 −

5

96
cos 5𝜏 . 

Constant 𝑎2 is determined from the above equation. From (5) we have, 

𝑥 3 + 𝑥3 = −2𝜔2𝑥 1 − 2𝜔3𝑥 0 +  1 − 𝑥0
2  𝑥 2 + 𝜔2𝑥 0 − 2𝑥0𝑥1𝑥 1 − 𝑥 0 2𝑥0𝑥1 + 𝑥1

2  

 =
1

8
 −

3

4
sin 𝜏 −

9

4
sin 3𝜏 + 4𝜔3 cos 𝜏 1 + 4 cos2 𝜏  −𝑎2 sin 𝜏 −

9

16
sin 3𝜏 +

25

96
sin 5𝜏 +

1

8
sin 𝜏 + 2 sin 𝜏 {4 cos 𝜏  𝑎2 cos 𝜏 +

3

10
cos 3𝜏 −

5

96
cos 5𝜏 +

1

16
 3 sin 𝜏 −

sin 3𝜏 2} 

= 4𝜔3 cos 𝜏 +  2𝑎2 +
1

4
 sin 𝜏 + ⋯ 

 To determine the secular term all must put 𝜔3 = 0 𝑎𝑛𝑑 𝑎2 = −
1

8
 . 

 Hence, 𝑥2 𝜏 = −
1

8
cos 𝜏 +

3

16
cos 3𝜏 −

5

96
cos 5𝜏. 

Now we have, 

𝑥 𝜏 = 2 cos 𝜏 + 𝜇  
3

4
sin 𝜏 −

1

4
sin 3𝜏 + 𝜇2  −

1

8
cos 𝜏 +

3

16
cos 3𝜏 −

5

96
cos 5𝜏 + ⋯ 

𝑎𝑛𝑑 𝜔 = 1 −
1

16
𝜇2 + ⋯     when 𝜏 = 𝜔𝑡. 

 

16.4 FREE, DAMPED MOTION: 

 

We now consider the effect of the resistance of the medium upon the mass on the spring. Still 

assuming that no external forces are present, this is then the case of free, damped motion. 

Hence with the damping coefficient 𝑎 > 0 and 𝐹(𝑡) = 0 for all 𝑡, the basic differential 

equation reduces to 

𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑎
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0.      (16.41) 

Dividing through by 𝑚 and putting 𝑘/𝑚 = 𝜆2 and 𝑎/𝑚 = 2𝑏 (for convenience) we have the 

differential equation (16.41) in the form 

𝑑2𝑥

𝑑𝑡2 + 2𝑏
𝑑𝑥

𝑑𝑡
+ 𝜆2𝑥 = 0      (16.42) 
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Observe that since 𝑎 is positive, 𝑏 is also positive. The auxiliary equation is 

𝑟2 + 2𝑏𝑟 + 𝜆2 = 0.       (16.43) 

Using the quadratic formula we find that the roots of (16.43) are 

−2𝑏± 4𝑏2−4𝜆2

2
= −𝑏 ±  𝑏2 − 𝜆2.     (16.44) 

Three distinct cases occur, depending upon the nature of these roots, which in turn depends 

upon the sign of 𝑏2 − 𝜆2. 

Case 1. Damped, Oscillatory Motion. Here we consider the case in which 𝑏 < 𝜆, which 

implies that 𝑏2 − 𝜆2 < 0. Then the roots (16.44) are the conjugate complex numbers 

−𝑏 ±  𝜆2 − 𝑏2𝑖 and the general solution of Equation (16.42) is thus 

𝑥 = 𝑒−𝑥2
 𝑐1sin⁡ 𝜆2 − 𝑏2𝑡 + 𝑐2cos⁡ 𝜆2 − 𝑏2𝑡 ,   (16.45) 

where 𝑐1 and 𝑐2 are arbitrary constants. We may write this in the alternative form 

𝑥 = 𝑐𝑒−𝑏𝑥 cos⁡  𝜆2 − 𝑏2𝑡 + 𝜙 ,     (16.46) 

where 𝑐 =  𝑐1
2 + 𝑐2

2 > 0 and 𝜙 is determined by the equations 

𝑐1

 𝑐1
2 + 𝑐2

2
= −sin⁡𝜙1 .

𝑐2

 𝑐1
2 + 𝑐2

2
= cos⁡𝜙.

 

The right member of Equation (16.46) consists of two factors, 

𝑐𝑒−h  and cos⁡  𝜆2 − 𝑏2𝑡 + 𝜙 .  

The factor 𝑐𝑒−𝑏  is called the damping factor, or time-zarying amplitude. Since 𝑐 > 0, it is 

positive; and since 𝑏 > 0, it tends to zero monotonically as 𝑡 → ∞. In other words, as time 

goes on this positive factor becomes smaller and smaller and eventually becomes negligible. 

The remaining factor, cos⁡  𝜆2 − 𝑏2𝑡 + 𝜙 , is, of course, of a periodic, ascillatory character; 

indeed it represents a simple harmonic motion. The product of these two factors, which is 

precisely the right member of Equation (16.46), therefore represents an oscillatory motion in 

which the oscillations become successively smaller and smaller. The oscillations are said to 

be "damped out," and the motion is described as damped, oscillatory motion. Of course, the 

motion is no longer periodic, but the time interval between two successive (positive) 

maximum displacements is still referred to as the period. This is given by 
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2𝜋

 𝜆2 − 𝑏2
 

The graph of such a motion is shown, in which the damping factor ce to and its negative are 

indicated by dashed curves. 

The ratio of the amplitude at any time 𝑇 to that at time 

𝑇 −
2𝜋

 𝜆2 − 𝑏2
 

one period before 𝑇 is the constant 

exp⁡ −
2𝜋𝑏

 𝜆2 − 𝑏2
  

Thus the quantity 2𝜋𝑏/ 𝜆2 − 𝑏2 is the decrease in the logarithm of the amplitude 𝑐𝑒−𝑡  over 

a time interval of one period. It is called the logarithmic decrement. 

If we now return to the original notation of the differential equation (16.41), we see from 

Equation (16.46) that in terms of the original constants 𝑚, 𝑎, and 𝑘, the general solution of 

(16.46) is 

𝑥 = 𝑐𝑒−|𝜃|2𝑚𝑖 ∣𝑡cos⁡  
𝑘

𝑚
−

𝑎2

4𝑚2 𝑡 + 𝜙 .    (16.47) 

Since 𝑏 < 𝜆 is equivalent to 𝑎/2𝑚 <  𝑘/𝑚, we can say that the general solution of (16.41) 

is given by (16.47) and that damped, oscillatory motion occurs when 𝑎 < 2 km. The 

frequency of the oscillations 

cos⁡  
𝑘

𝑚
−

𝑎2

4𝑚2 𝑡 + 𝜙       (16.48) 

is 

1

2𝜋
 

𝑘

𝑚
−

𝑎2

4𝑚2
. 

If damping were not present, 𝑎 would equal zero and the natural frequency of an undamped 

system would be (1/2𝜋) 𝑘/𝑚. Thus the frequency of the oscillations (16.48) in the damped 

oscillatory motion (16.47) is less than the natural frequency of the corresponding undamped 

system. 

Case 2. Critical Damping. This is the case in which 𝑏 = 𝜆, which implies that 𝑏2 − 𝜆2 = 0. 

The roots (16.44) are thus both equal to the real negative number −𝑏, and the general 

solution of Equation (16.42) is thus 
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𝑥 =  𝑐1 + 𝑐2𝑡 𝑒
−𝑏𝑡 .       (16.49) 

The motion is no longer oscillatory; the damping is just great enough to prevent oscillations. 

Any slight decrease in the amount of damping, however, will change the situation back to 

that of Case 1 and damped oscillatory motion will then occur. Case 2 then is a borderline 

case; the motion is said to be critically damped. 

 

From Equation (16.49) we see that 

lim
𝑡→∞

 𝑥 = lim
𝑡→∞

 
𝑐1 + 𝑐2𝑡

𝑒𝑡𝑟
= 0. 

Hence the mass tends to its equilibrium position as 𝑡 → ∞. Depending upon the initial 

conditions present, the following possibilities can occur in this motion: 

1 The mass neither passes through its equilibrium position nor attains an extremum 

(maximum or minimum) displacement from equilibrium for 𝑡 > 0. It simply 

approaches its equilibrium position monotonically as 𝑡 → ∞. 

2 The mass does not pass through its equilibrium position for 𝑡 > 0, but its 

displacement from equilibrium attains a single extremum for 𝑡 = 𝑇1 > 0. After this 

extreme displacement occurs, the mass tends to its equilibrium position monotonically 

as 𝑡 → ∞.  

3 The mass passes through its equilibrium position once at 𝑡 = 𝑇2 > 0 and then attains 

an extreme displacement at 𝑡 = 𝑇3 > 𝑇2, following which it tends to its equilibrium 

position monotonically as 𝑡 → ∞. 

Case 3. Overcritical Damping. Finally, we consider here the case in which 𝑏 > 𝜆0 

which implies that 𝑏2 − 𝜆2 > 0. Here the roots (16.41) are the distinct, real negative 

numbers 

𝑟1 = −𝑏 +  𝑏2 − 𝜆2 

and 

𝑟2 = −𝑏 −  𝑏2 − 𝜆2 

The general solution of (16.42) in this case is 

𝑥 = 𝑐1𝑒
𝑟+1 + 𝑐2𝑒

𝑟1𝑒       (16.50) 

The damping is now 50 great that no oscillations can occur. Further, we can no longer 

say that enery decrease in the amount of damping will result in oscillations, as we 

could in Case 2. The motion here is said to be overcritically damped (or simply 

overdamped). Equation (16.50) shows us at once that the displacement 𝑥 approaches 

zero as 𝑡 → ∞. As in Case 2 this approach to zero is monotonic for 1 sufficiently 

large. Indeed, the three possible motions in Cases 2 and 3 are qualitatively the same. 

Thus the three motions illustrated  can also serve to illustrate the three types of motion 

possible in Case 3. 
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Example16 .2: 

 

A 32-lb weight is attached to the lower end of a coil spring suspended from the 

ceiling. The weight comes to fest in its equilibrium position, thereby stretching the 

spring 2ft.The weight is then pulled down 6 in. below its equilibrium position and 

released at 𝑡 = 0. No external forces are present; but the resistance of the medium in 

pounds is numerically equal to 4(𝑑𝑥/𝑑𝑡), where 𝑑𝑥/𝑑𝑡 is the instantaneous velocity 

in feet per second. Determine the resulting motion of the weight on the spring. 

Formulation. This is a free, damped motion and Equation (16.41) applies. Since the 32 − 1b 

weight stretches the spring 2ft, Hooke's law, 𝐹 = 𝑘𝑠, gives 32 − 𝑘(2) and so 𝑘 = 16lb/ft. 

Thus, since 𝑚 = 𝑤/𝑔 =
32

32
= 1 (slug), and the damping constant 𝑎 = 4. Equation (16.41) 

becomes 

𝑑2𝑥

𝑑𝑡2 + 4
𝑑𝑥

𝑑𝑡
+ 16𝑥 = 0       (16.51) 

The initial conditions are 

𝑥(0) =
1

2
,

𝑥 ′(0) = 0.
       (16.52) 

Solution. The auxiliary equation of Equation (16.51) is 

𝑟2 + 4𝑟 + 16 = 0       (16.53) 

Its roots are the conjugate complex numbers −2 ± 2 3𝑖. Thus the general solution of (16.51) 

may be written 

𝑥 = 𝑒−21 𝑐1sin⁡2 3𝑡 + 𝑐2cos⁡2 3𝑡 .    (16.54) 

where 𝑐1 and 𝑐2 are arbitrary constants. Differentiating (16.54) with respect to 𝑡 we obtain 

𝑑𝑥

𝑑𝑡
= 𝑒−2𝑡  −2𝑐1 − 2 3𝑐2 sin⁡2 3𝑡 +  2 3𝑐1 − 2𝑐2 cos⁡2 3𝑡 . (16.55) 

Applying the initial conditions (16.53) to Equations (16.54) and (16.55), we obtain 

𝑐2 =
1

2
,

2 3𝑐1 − 2𝑐2 = 0.

 

Thus 𝑐1 =  3/6, 𝑐2 =
1

2
 and the solution is 
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𝑥 = 𝑒−2𝑡  
 3

6
sin⁡2 3𝑡 +

1

2
cos⁡2 3𝑡     (16.56) 

Let us put this in the alternative form We have 

 3

6
sin⁡2 3𝑡 +

1

2
cos⁡2 3𝑡 =

 3

3
 
1

2
sin⁡2 3𝑡 +

 3

2
cos⁡2 3𝑡 

=
 3

3
cos⁡ 2 3𝑡 −

𝜋

6
 

 

Thus the solution (16.56) may be written 

𝑥 =
 3

3
𝑒−2𝑡cos⁡ 2 3𝑡 −

𝜋

6
 .      (16.57) 

 

 

 

Exercise: 

(i) Use perturbation method to obtained solutions of period 2𝜋 and the 

amplitudefrequency relations up to including terms of order 𝜇2 for the following 

equations 

(a) 
𝑑2𝑢

𝑑𝑡2 − 𝜇𝑥
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0. 

(b)  1 + μ
dx

dt
 

d2x

dt2 + x = 0.  

(c) 
d2x

dt2 − 𝜇 1 − 𝑥2 
𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 𝑉𝑎𝑛𝑑𝑒𝑟 𝑃𝑜𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 , initial condition for 

problem (i) and (ii) are 𝑥 0 = 𝑎, 𝑥  0 = 0. 
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UNIT-17 

 

Solutions for the equations of motion of a simple pendulum, Duffing and Vanderpol 

oscillators. 

 

17.1 Introduction: 

At first almost all perturbation methods are based on an assumption that a small 

parameter must exist in the equation. This is so called small parameter assumptiongreatly 

restrict application of perturbation techniques. On Secondly, the determinationof small 

parameter seems to be a special art requiring special techniques. An appropriatechoice of 

small parameter leads to ideal result. However an unsuitable choice of smallparameter results 

badly. The Homotopy Perturbation method does not depend upona small parameter in the 

equation. This method, which is a combination of homotopyand perturbation techniques, 

provides us with a convenient way to obtain analytic orapproximate solution to a wide variety 

of problems arising in different field. So, this wasintroduced as a powerful tool to solve 

various kinds of non-linear problems. 

 

17.2 Regular Perturbation Theory:  

 

Very often, a mathematical problem cannot be solved exactly or, if the exact solution 

isavailable it exhibits such an intricate dependency in the parameters that it is hard to useas 

such. It may be the case however, that a parameter can be identified, say 𝜖,such thatthe 

solution is available and reasonably simple for 𝜖 = 0 . Then one may wonder howthis solution 

is altered for non-zero but small𝜖. Perturbation theory gives a systematicanswer to this 

question. 

 

Example-17.1: Consider an quadratic equation 

𝑥2 − (3 + 2𝜖)𝑥 + 2 + 𝜖 = 0      (17.1) 

when 𝜖 = 0 then (17.1) reduce to 

𝑥2 − 3𝑥 + 2 = 0 ⇒ (𝑥 − 2)(𝑥 − 1) = 0    (17.2) 

whoee roots are 𝑥 = 1 and 2. Equation (17.1) is called pertubed equation where as equation 

(17.2) is called un-perturbed or reduced equation. 
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Step1: In determining an approximate solution is to assume the form of the expansion. 

Let us assume that the roots have expansion in the form 

𝑥 = 𝑥0 + 𝜖𝑥1 + 𝜖2𝑥2 + ⋯      (17.3) 

Here the first term 𝑥0 is the zeroth-order term, the second term 𝜖𝑥1 is the first order term and 

the third term 𝜖2𝑥2 as the second order term. 

Step2: Substitute equation (17.3) in equation (17.1) 

 𝑥0 + 𝜖𝑥1 + 𝜖2𝑥2 + ⋯ 2 − (3 + 2𝜖) 𝑥0 + 𝜖𝑥1 + ⋯ + 2 + 𝜖 = 0 (17.4) 

Step3: Using binomial theorem to expand the first term 

 𝑥0 + 𝜖𝑥1 + 𝜖2𝑥2 + ⋯ 2 = 𝑥0
2 + 2𝑥0 𝜖𝑥1 + 𝜖2𝑥2 + ⋯ +  𝜖𝑥1 + 𝜖2𝑥2 + ⋯ 2

= 𝑥0
2 + 2𝜖𝑥0𝑥1 + 2𝜖2𝑥0𝑥2 + 𝜖2𝑥1

2 + 2𝜖3𝑥1𝑥2 + 𝜖4𝑥2
2 + ⋯

= 𝑥0
2 + 2𝜖𝑥0𝑥1 + 𝜖2 2𝑥0𝑥2 + 𝑥1

2 + ⋯            (17.5)

 

Similarly, 

(3 + 2𝜖) 𝑥0 + 𝜖𝑥1 + 𝜖2𝑥2 + ⋯ = 3𝑥0 + 3𝜖𝑥1 + 3𝜖2𝑥1 + 2𝜖𝑥0 + 2𝜖2𝑥1 + ⋯

= 3𝑥0 + 𝜖 3𝑥1 + 2𝑥0 + 𝜖2 3𝑥2 + 2𝑥1 + ⋯
 (17.6) 

Substitute equation (17.5)and(17.6) in equation (17.4) 

𝑥0
2 + 2𝜖𝑥0𝑥1 + 𝜖2 2𝑥0𝑥2 + 𝑥1

2 −  3𝑥0 + 𝜖 3𝑥1 + 2𝑥0 + 𝜖2 3𝑥2 + 2𝑥1  + 2 + 𝜖 = 0 

Collect the co-efficient of like powers of 𝜖 yields, 

 𝑥0
2 − 3𝑥0 + 2 + 𝜖 2𝑥0𝑥1 − 3𝑥1 − 2𝑥0 + 1 + 𝜖2 2𝑥0𝑥2 + 𝑥1

2 − 3𝑥2 − 2𝑥1 + ⋯ = 0 

17.7) 

Step4: Equating the co-efficient of each power of 𝜖 to Zero. 

𝑥0
2 − 3𝑥0 + 2 = 0         (17.8)

2𝑥0𝑥1 − 3𝑥1 − 2𝑥0 + 1 = 0          (17.9)

2𝑥0𝑥2 + 𝑥1
2 − 3𝑥2 − 2𝑥1 = 0      (17.10)

 

From equation (17.8), 𝑥0 = 1,2, when 𝑥0 = 1 equation (17.9) becomes 

𝑥1 + 1 = 0 ⇒ 𝑥1 = −1 

When 𝑥0 = 1 and 𝑥1 = −1 equation (17.10) becomes 

2𝑥2 + 1 − 3𝑥2 + 2 = 0

⇒ 𝑥2 − 3 = 0 ⇒ 𝑥2 = 3
 

When 𝑥0 = 2, equation (17.9) becomes 
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𝑥1 − 3 = 0 ⇒ 𝑥1 = 3 

equation (17.10) ⇒ 𝑥2 + 3 = 0 ⇒ 𝑥2 = −3 

 

Step5: When 𝑥0 = 1, 𝑥1 = −1 and 𝑥2 = 3 

𝐸𝑞𝑢𝑛 (3) ⇒ 𝑥 = 1 − 𝜖 + 3𝜖2 + ⋯      (17.11) 

When 𝑥0 = 2, 𝑥1 = 3 and 𝑥2 = −3 

𝐸𝑞𝑐5(3) ⇒ 𝑥 = 2 + 3𝜖 − 3𝜖2      (17.12) 

∴ Hence 𝐸𝑞𝑢𝑛(17.11) and (17.12) are the approximations for the two roots of (17.1). 

Now, to verify this approximation are correct, we compare with the exact solution. 

𝑥2 − (3 + 2𝜖)𝑥 + 2 + 𝜖 = 0

⇒ 𝑥 =
1

2
 3 + 2𝜖 ±  (3 + 2𝜖)2 − 4(2 + 𝜖) 

⇒ 𝑥 =
1

2
 3 + 2𝜖 ±  1 + 8𝜖 + 4𝜖2    (17.13)

 

Using binomial theorem, we have 

 1 + 8𝜖 + 4𝜖2 
1

2 = 1 +
1

2
 8𝜖 + 4𝜖2 +

 
1

2
  

−1

2
 

2!
 8𝜖 + 4𝜖2 2 + ⋯

= 1 + 4𝜖 + 2𝜖2 −
1

8
 64𝜖2 + ⋯ 

= 1 + 4𝜖 + 2𝜖2 − 8𝜖2 + ⋯
= 1 + 4𝜖 − 6𝜖2 + ⋯

 

Substitute this value in 𝐸𝑞𝑢𝑛(17.13), we have 

𝑥 =
1

2
 3 + 2𝜖 + 1 + 4𝜖 − 6𝜖2 + ⋯ 

= 2 + 3𝜖 − 3𝜖2 + ⋯

𝑥 =
1

2
 3 + 2𝜖 − 1 − 4𝜖 + 6𝜖2 + ⋯ 

= 1 − 𝜖 + 3𝜖2 + ⋯

 

Which are same as equation (17.11) and (17.12). 

 

𝟏𝟕. 𝟑 Singular Perturbation Theory: 

 It concern the study of problems featuring a parameter for which the solution of the 

problem at a limiting value of the parameter are different in character from the limit of the 

solution of the general problem. For regular perturbation problems, the solution of the general 
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problem converge to the solution of the limit problem as the parameter approaches the limit 

value. 

 

Example-17.2: Consider, 

𝑒𝑥2 + 𝑥 + 1 = 0      (17.14) 

Since equation (17.14) is a quadratic equation, it has two roots. For 𝜖 ⟶ 0 Equation (17.14) 

reduce to 

𝑥 + 1 = 0       (17.15) 

Which is of first order. Thus 𝑥 is discontinuous at 𝜖 = 0. Such perturbation are called 

singular perturbation problem. 

𝑥 = 𝑥0 + 𝜖𝑥1 + 𝜖2𝑥2 + ⋯     (17.16) 

Putting this value in Equation (17.14) 

𝜖 𝑥0 + 𝜖𝑥1 + ⋯ + 𝑥0 + 𝑒𝑥1 + ⋯ + 1 = 0

⇒ 𝜖 𝑥0
2 + 2𝜖𝑥0𝑥1 + ⋯ + 𝑥0 + 𝜖𝑥1 + ⋯ + 1 = 0

⇒ 𝜖𝑥0
2 + 2𝜖2𝑥0𝑥1 + ⋯ + 𝑥0 + 𝜖𝑥1 + ⋯ + 1 = 0

⇒ 𝜖 𝑥0
2 + 𝑥1 + 𝑥0 + 1 = 0

 

Equating co-efficient of like power of 𝜖 gives 

𝑥0 + 1 = 0

𝑥1 + 𝑥0
2 = 0

 

When 𝑥0 = −1, 𝑥1 = −1 So one of the root is 

𝑥 = −1 − 𝜖 + ⋯      (17.17) 

Thus as expected the above procedure yielded only one root. We investigate the exact 

solution i.e. , 

𝑥 =
1

2𝜖
(−1 ±  1 − 4𝜖)     (17.18) 

Using binomial theorem we have 

 1 − 4𝜖 = 1 − 2𝜖 +
 

1

2
  

−1

2
 

2!
× (−4𝜖)2 + ⋯

= 1 − 2𝜖 − 2𝜖2 + ⋯

 (17.19) 

Substituting (17.19) in (17.18) 
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𝑥 =
−1 + 1 − 2𝜖 − 2𝜖2 + ⋯

2𝜖
= −1 − 𝜖 + ⋯                      (17.20)

𝑥 =
−1 − 1 + 2𝜖 + 2𝜖2 + ⋯

2𝜖
=

−1

𝜖
+ 1 + 𝜖 + ⋯               (17.21)

 

Therefore, both of the roots go in powers of 𝜖 but one starts with 𝜖−1. Hence it is not 

surprising that the assumed expansion in (17.16) is failed to produce the root (17.21). 

consequently one can not determine the second root by a perturbation technique unless its 

form is known. In those cases, we recognize that, if the order of the equation is not to be 

reduced, the other tends to ∞ as 𝜖 ⟶ 0 and hence, assume that the leading term has the form 

   𝑥 =
𝑦

𝜖𝑣       (17.22)   

Where 𝑣 must be greater than zero and needs to be determined in the course of analysis. 

Substitute (17.22) in (17.14) 

𝜖1−2𝑣𝑦2 + 𝜖𝑣𝑦 + 1 + ⋯ = 0 

Since 𝑣 > 0, th second term is much bigger than 1 . Hence the dominant part of (17.22) is 

𝜖1−2𝑣𝑦2 + 𝜖𝑣𝑦 = 0     (17.23) 

which demands that power of 𝜖 be the same. 

1 − 2𝑣 = −𝑣 ⇒ 𝑣 = 1 

For 𝑣 = 1 ⇒ 𝑦 = 0 or −1. 

The first value 𝑦 = 0, correspond to the first root 𝑥 = −1 − 𝜖. For 𝑦 = −1, it corresponds to 

second root. Thus it follows from (17.22) 

𝑥 =
−1

𝜖
+ ⋯ 

To determine more terms in the expension of second root, we try 

𝑥 =
−1

𝜖
+ 𝑥0 + ⋯    (17.24) 

Substitute it in equation (17.14) 

⇒ 𝜖  
−1

𝜖
+ 𝑥0 + ⋯ 

2

−
−1

𝜖
+ 𝑥0 + ⋯ + 1 = 0

⇒ 𝜖  
−12

𝜖
+

2𝑥0

𝜖
+ 𝑥0

2 + ⋯ −
−1

𝜖
+ 𝑥0 + 1 + ⋯ = 0

⇒ −2𝑥0 + 𝑥0 + 1 + 𝑂(𝜖) = 0

 

⇒ 𝑥0 = 1 and equation (17.24) becomes 
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𝑥 = −
1

𝜖
+ 1 + ⋯ 

Alternatively, once 𝑣 has been determined. We view (17.22) as a transformation from 𝑥 to 𝑦. 

Then putting 𝑥 =
1

𝜀
 in (17.14) yields, 

𝑦2 + 𝑦 + 𝜖 = 0    (17.25) 

Which can be solved to determine both the roots because 𝜖 does not multiply the highest 

order. 

 

17.4 Perturbation Theory For Differential Equation: 

 

Example-17.3 : Consider, 

𝑑2𝑦

𝑑𝜏2 = −𝜖
𝑑𝑦

𝑑𝜏
− 1, 𝑦(0) = 0,

𝑑𝑦

𝑑𝜏
(0) = 1    (17.26) 

Let us assume the expansion 

𝑦(𝜏) = 𝑦0(𝜏) + 𝜖𝑦1(𝜏) + 𝜖2𝑦2(𝜏) + ◯ 𝜖3     (17.27) 

Sutstitute Equation (17.27) in (17.26) 

𝑑2𝑦

𝑑𝜏2
+ 𝜖

𝑑𝑦

𝑑𝜏
+ 1 = 0

𝑑2

𝑑𝜏2
 𝑦0(𝜏) + 𝜖𝑦1(𝜏) + 𝜖2𝑦2(𝜏) + 𝑂 𝜖3  

+𝜖
𝑑

𝑑𝜏
 𝑦0(𝜏) + 𝜖𝑦1(𝜏) + 𝜖2𝑦2(𝜏) + 𝑂 𝜖3  + 1 = 0

⇒
𝑑2𝑦0

𝑑𝜏2
+ 1 + 𝜖  

𝑑2𝑦1

𝑑𝜏2
+

𝑑𝑦0

𝑑𝜏
 + 𝜖2  

𝑑2𝑦2

𝑑𝜏2
+

𝑑𝑦1

𝑑𝜏
 + 𝑂 𝜖3 = 0

 

Equating the co-efficient of 𝜖, it becomes 

⇒
𝑑2𝑦0

𝑑𝜏2 + 1 = 0, 𝑦0(0) = 0,
𝑑𝑦0

𝑑𝜏
(0) = 1

⇒
𝑑2𝑦1

𝑑𝜏2 +
𝑑𝑦0

𝑑𝜏
= 0, 𝑦1(0) = 0,

𝑑𝑦1

𝑑𝜏
(0) = 0

⇒
𝑑2𝑦2

𝑑𝜏2 +
𝑑𝑦1

𝑑𝜏
= 0, 𝑦1(0) = 0,

𝑑𝑦1

𝑑𝜏
(0) = 0

 (17.28) 

By solving the above equation we will get 
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𝑦0 𝜏 = 𝜏 −
𝜏2

2
                      (17.29)

𝑦1 𝜏 =
−𝜏2

2
+

𝜏3

6
                 (17.30)

𝑦2 𝜏 =
𝜏3

6
−

𝜏4

24
                     (17.31)

 

Putting these values in equation (17.27), we have the solution 

𝑦(𝜏) = 𝜏 −
𝜏2

2
+ 𝜖  

−𝜏2

2
+

𝜏3

6
 + 𝜖2  

𝜏3

6
−

𝜏4

24
 + ◯ 𝜖3  

 

Example 17.4: We will consider the Lighthill equation 

(𝑥 + 𝜖𝑦)
𝑑𝑦

𝑑𝑥
+ 𝑦 = 0, 𝑦(1) = 1    (17.32) 

By the method, we can construct a homotopy which satisfies 

(1 − 𝑝)  𝜖𝑌
𝑑𝑌

𝑑𝑥
− 𝜖𝑦0

𝑑𝑦0

𝑑𝑥
 + 𝑝  (𝑥 + 𝜖𝑦)

𝑑𝑌

𝑑𝑥
+ 𝑌 = 0, 𝑝 ∈ [0,1] (17.33) 

We can obtain a solution of (17.33) in the form 

𝑌(𝑥) = 𝑌0(𝑥) + 𝑝𝑌1(𝑥) + 𝑝2𝑌2(𝑥) + ⋯    (17.34) 

Where 𝑌𝑖(𝑥); 𝑖 = 0,1,2, … are functions yet to be determined. By considering only first two 

terms of the above equation substitute equation (17.34) into equation (17.33) 

(1 − 𝑝)  𝜖 𝑌0 + 𝑝𝑌1  
𝑑𝑌0

𝑑𝑥
+

𝑑𝑌1

𝑑𝑥
 − 𝜖𝑦0

𝑑𝑦0

𝑑𝑥
 

+𝑝   𝑥 + 𝜖𝑌0 + 𝜖𝑝𝑌1  
𝑑𝑌0

𝑑𝑥
+ 𝑝

𝑑𝑌1

𝑑𝑥
 +  𝑌0 + 𝑝𝑌1  = 0

⇒ (1 − 𝑝)  𝜖𝑌0  
𝑑𝑌0

𝑑𝑥
+

𝑑𝑌1

𝑑𝑥
 + 𝜖𝑝𝑌1  

𝑑𝑌0

𝑑𝑥
+

𝑑𝑌1

𝑑𝑥
 − 𝜖𝑦0

𝑑𝑦0

𝑑𝑥
 

+𝑝   𝑥 + 𝜖𝑌0 + 𝜖𝑝𝑌1  
𝑑𝑌0

𝑑𝑥
+ 𝑝

𝑑𝑌1

𝑑𝑥
 +  𝑌0 + 𝑝𝑌1  = 0

⇒ 𝜖𝑝𝑌1

𝑑𝑌1

𝑑𝑥
+ (1 − 𝑝)  𝜖𝑌0

𝑑𝑌0

𝑑𝑥
− 𝜖𝑦0

𝑑𝑦0

𝑑𝑥
 

+𝑝   𝑥 + 𝜖𝑌0 
𝑑𝑌0

𝑑𝑥
+ 𝑌0 + 𝜖𝑝2𝑌1  

𝑑𝑌0

𝑑𝑥
+ 𝑝

𝑑𝑌1

𝑑𝑥
 + 𝑝2𝑌1 = 0
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𝑑𝑌0 𝑑𝑦0
𝜖𝑌0 − 𝜖𝑦0 = 0                   (17.35)

𝑑𝑥 𝑑𝑥
 

𝑑𝑌1 𝑑𝑌0
𝜖𝑌1 +   𝑥 + 𝜖𝑌0 + 𝑌0 = 0              (17.36)

𝑑𝑥 𝑑𝑥

The initial approximation 𝑌0(𝑥) or 𝑦0(𝑥) can be freely chosen. Here I set  

𝑌0(𝑥) = 𝑦0(𝑥) = −
𝑥

𝜖
, 𝑌0(1) = −

1

𝜖
     (17.37) 

So that, the residual of equation (17.32) at 𝑥 = 0 vanishes. Then substitute equation (17.37) 

into equation (17.36), 

𝜖𝑌1

𝑑𝑌1

𝑑𝑥
+   𝑥 − 𝜖

𝑥

𝜖
 
𝑑𝑌0

𝑑𝑥
−

𝑥

𝜖
 = 0

⇒ 𝜖𝑌1

𝑑𝑌1

𝑑𝑥
−

𝑥

𝜖
= 0

⇒ 𝜖𝑌1

𝑑𝑌1

𝑑𝑥
=

𝑥

𝜖
⇒ 𝜖2𝑌1𝑑𝑌1 = 𝑥𝑑𝑥

 

Integrating both sides, we get 

⇒ 𝜖2
𝑌1

2

2
=

𝑥2

2
+ 𝑐

⇒ 𝜖2𝑌1
2 = 𝑥2 + 2𝑐

⇒ 𝑌1 =
 𝑥2 + 2𝑐

𝜖

⇒ 𝜖𝑌1 =  𝑥2 + 2𝑐                           (17.38)

 

Putting the initial condition 𝑌1(1) = 1 − 𝑌0 = 1 +
1

𝜀
, 

⇒ 𝜖  1 +
1

𝜖
 =  1 + 2𝑐

⇒ 1 + 𝜖 =  1 + 2𝑐
⇒ 1 + 𝜖2 + 2𝜖 = 1 + 2𝑐

⇒ 𝑐 =
𝜖2 + 2𝜖

2

 

Now, putting this value in equation (17.38) we get 

𝑌1 =
1

𝜖
 𝑥2 + 2𝜖 + 𝜖2   (17.39)  

Substitute this value in 𝑒𝑞𝑢𝑛(17.34), 

⇒ 𝑌(𝑥) = 𝑌0(𝑥) + 𝑌1(𝑥) =
1

𝜖
 −𝑥 +  𝑥2 + 2𝜖 + 𝜖2    (17.40) 

Now, we get 
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Which is the exact solution of 𝑒𝑞𝑐∘(17.32). 

 

 

17.5Lindsted-Poincare′ Method: 

 Let us consider the differential equation 

𝑑2𝑥

𝑑𝑡2 + 𝜔2𝑥 + 𝜇𝑓 𝑥 = 0          …………………………..(17.41) 

which characterises a conservative system with unknown period T(say), i.e., unknown 

frequency Ω =
2𝜋

𝑇
 which reduces to 𝜔 when 𝜇 → 0. In order to avoid dealing with unknown 

period, we select a variable 𝑧(𝜏) which has period 2𝜋. If such a variable is selected, the 

system has a period 2𝜋 in that variable, but as we had to change the time scale as well, the 

frequency not Ω. In the new variables (i.e., in the variable 𝑧(𝜏)  and 𝜏 = Ω𝑡). The equation 

(17.41) becomes 

Ω2𝑧 + 𝜔2𝑧 + 𝜇𝑓 𝑧 = 0             ………………………(17.42) 

where dot denotes the differentiation w.r.to 𝜏. We put  

𝑧 𝜏 = 𝑧0 𝜏 + 𝜇𝑧1 𝜏 + 𝜇2𝑧2 𝜏 + ⋯ 

AndΩ2 = 𝛼0 + 𝜇𝛼1 + 𝜇2𝛼2 + ⋯………………….(17.43) 

It is seen that Ω2 = 𝜔2 = 𝛼0  𝑎𝑠 𝜇 → 0. Since in this case we have harmonic 

oscillation of period 2𝜋 in the new choice of time scale, we have also 

𝑓 𝑧 = 𝑓(𝑧0 + 𝜇𝑧1 + 𝜇2𝑧2 + ⋯ ) 

 = 𝑓 𝑧0 + 𝜇𝑧1𝑓
′ 𝑧0 + 𝜇2[𝑧2𝑓

′ 𝑧0 +
𝑧1

2

2!
𝑓″(𝑧0)] + ⋯ 

Substituting (17.43) and (17.44) into (17.42) and then equating like power of 𝜇 from both 

sides we get, the sequence of linear differential equation 

𝜔2𝑧0 + 𝜔2𝑧0 = 0 

𝜔2𝑧1 + 𝜔2𝑧1 = −𝑓 𝑧0 − 𝛼1𝑧0  

𝜔2𝑧2 + 𝜔2𝑧2 = −𝑧1𝑓
′  𝑧0 − 𝛼2𝑧0 − 𝛼1𝑧1  

𝜔2𝑧 𝑛+1 + 𝜔2𝑧𝑛+1 = 𝐹 𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑛 − 𝛼𝑛+1𝑧0 − 𝛼𝑛𝑧1 − ⋯− 𝛼1𝑧𝑛 . 

where 𝐹 𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑛  is a polynomial in 𝑧0, 𝑧1, 𝑧2, … , 𝑧𝑛 . 

 The first equation (17.45) gives 𝑧0 = acos 𝜏(in view of 𝑧0 0 = 𝑎 𝑎𝑛𝑑 𝑧 0 0 = 0), 

where a is arbitrary constant. Substituting this in the second equation of (17.45), we get 
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𝜔2 𝑧1 + 𝑧1 = −𝑓 acos 𝜏 + 𝛼1 acos 𝜏        …………………..(17.46) 

We develop the function 𝑓 acos 𝜏  in the Fourier series containing only cosine term 

𝑖. 𝑒. , 𝑓(𝑓 acos 𝜏 =  𝑓𝑛  𝑎 cos 𝑛𝜏

∞

𝑛=0

 

 = 𝑓0 𝑎 + 𝑓1 𝑎 cos 𝜏 +  𝑓𝑛 𝑎 cos 𝑛𝜏

∞

𝑛=2

 

So that the equation (17.46) becomes 

𝜔2 𝑧1 + 𝑧1 = −𝑓0 𝑎 +  𝛼1𝑎 − 𝑓1 𝑎 cos 𝜏 −  𝑓𝑛  𝑎 cos 𝑛𝜏∞
𝑛=2        ……..(17.47) 

Equating the secular term by putting 𝛼1 =
𝑓1 𝑎 

𝑎
 , we get from (17.47), we have 

𝑧1 + 𝑧1 = −
1

𝜔2 𝑓0 𝑎 −
1

𝜔2
 𝑓𝑛 𝑎 cos 𝑛𝜏∞

𝑛=2             ……………….(17.48) 

Whose solution is 

𝑧1 = 𝐴 cos 𝜏 = −
1

𝜔2 𝑓0 𝑎 +
1

𝜔2
 

𝑓𝑛  𝑎 cos 𝑛𝜏

𝑛2−1

∞
𝑛=2  , where A is constant of integration. 

To simplifying the solution we take 𝐴 = 0, so that 

𝑧1(𝜏) = 𝐴 cos 𝜏 = −
1

𝜔2 𝑓0 𝑎 +
1

𝜔2
 

𝑓𝑛  𝑎 cos 𝑛𝜏

𝑛2−1

∞
𝑛=2          ………………(17.49) 

 Replacing 𝑧0  𝑎𝑛𝑑 𝑧1into the third equation of (17.45) and eliminating the secular 

terms we obtained the value of 𝛼2. The process is repeated and the sequence 𝑧0 , 𝑧1, 𝑧2, … , 𝑧𝑛  

of successive approximation are obtained, but in each of term the singular term (resonance 

term) are eliminated, this results in another sequence 𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑛  which is determine the 

frequency Ω2
. Thus we arrive the differential equation 

𝑧 𝑛+1 + 𝑧𝑛+1 =
1

𝜔2
 𝑏0 𝑎 +  𝑏𝑛 𝑎 cos 𝑛𝜏

∞

𝑛=2

 +
1

𝜔2
[𝛼𝑛+1𝑎 + 𝑏1 𝑎 cos 𝜏] 

        This elimination of the secular terms requires 𝛼𝑛+1 =
𝑏1 𝑎 

𝑎
 which results in the 

differential equations 

𝑧 𝑛+1 + 𝑧𝑛+1 =
1

𝜔2
 𝑏0 𝑎 +  𝑏𝑛 𝑎 cos 𝑛𝜏∞

𝑛=2  , whose solution is 

𝑧𝑛+1 =
1

𝜔2
 𝑏0 𝑎 −  

𝑏𝑛 𝑎 cos 𝑛𝜏

𝑛2−1

∞
𝑛=2         …………………….(17.50) 

As the example, consider the differential equation 

𝑥 + 𝑥 + 𝜇𝑥3 = 0 
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Taking 𝑧0(𝜏) = acos 𝜏 with 𝜔2 = 1, 𝛼0 = 1, we have 

𝑧1 + 𝑧1 =  𝛼1𝑎 −
3

4
𝑎3 cos 𝜏 −

1

4
𝑎3 cos 3𝜏 

Therefore, 𝑧1 =
1

32
𝑎3 cos 3𝜏 

When we have, 𝑧2 + 𝑧2 =  𝛼2𝑎 −
3

128
𝑎5 cos 𝜏 −

21

128
𝑎5 cos 3𝜏 −

3

128
𝑎5 cos 5𝜏 

Therefore, 𝑧2 = −
21

1024
𝑎5 cos 3𝜏 +

1

1024
𝑎5 cos 5𝜏 . 

Similar, from the above results we have the value of 𝑥 𝑡 𝑎𝑛𝑑 Ω2 . 

17.6 Application of Lindsted-Poincare′ Method of Obtaining Periodic Solution in the 

Neighbourhood of the Centre of Non-Linear Conservative Systems:  

 Consider the conservative system governed by the differential equation 

𝑢 + 𝑓 𝑢 = 0        ……………….(17.51) 

where f(u) is in general non-linear function of u. Let 𝑢 = 𝑢0 be a centre and as such the 

motion represented by (17.51) is oscillatory in the nbd of 𝑢 = 𝑢0 and put 𝑥 = 𝑢 − 𝑢0 so that 

the equation (17.51) is transformed into 

𝑥 + 𝑓(𝑥 + 𝑢0)         ………..….(17.52)   

Assuming f can be expanded in Taylor′s series we have, 

𝑥 +  𝛼𝑛𝑥𝑛 = 0∞
𝑛=1     ……………(17.53) 

where 𝛼𝑛 =
1

𝑛!
𝑓𝑛 (𝑢0) and 𝑓𝑛(𝑢0) denotes the n-th derivative w.r.to arguments for the centre 

and 𝑓 𝑢0 = 0, 𝑓′  𝑢0 = 𝛼1 > 0. 

 For small but finite amplitude motion, we introduce a small dimension parameter 𝜇 

which is of the order of the motion. Hence, we assume that the solution of (17.53) can be 

represented by the expansion of the form 

𝑥 𝑡; 𝜇 = 𝜇𝑥1 𝑡 + 𝜇2𝑥2 𝑡 + 𝜇3𝑥3 𝑡 + ⋯               ………..(17.54) 

Substituting (17.54) in (17.53) and then equating like power of 𝜇, we obtain  

𝑥1 + 𝜔0
2𝑥1 = 0 

𝑥2 + 𝜔0
2𝑥2 = −𝛼2𝑥1

2 

𝑥3 + 𝜔0
2𝑥3 = −2𝛼2𝑥1𝑥2 + 𝛼3𝑥1

2 

…     ……      ……    ……   … 
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where 𝜔0
2 = 𝛼1 

 Let us now introduce a 𝜇 − 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡variable 𝜏 by 𝜏 = 𝜔𝑡, where 𝜔 is a 

unspecified function of 𝜇. Then assuming expansion of the form 

𝜔 = 𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ 

                                       and 𝑥 𝜏; 𝜇 = 𝜇𝑥1 𝜏 + 𝜇2𝑥2 𝜏 + 𝜇3𝑥3 𝜏 + ⋯ 

where 𝑥1, 𝑥2, 𝑥3, …    are independent of 𝜇, the equation (17.53) gives 

 𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ 2
𝑑2

𝑑𝜏2
 𝜇𝑥1 + 𝜇2𝑥2 + 𝜇3𝑥3 + ⋯ 

+  𝛼𝑛

∞

𝑛=1

  𝜇𝑥1 + 𝜇2𝑥2 + 𝜇3𝑥3 + ⋯  
𝑛

= 0. 

Equating like powers of 𝜇 and taking 𝜔0
2 = 𝛼1, we get 

𝑑2𝑥1

𝑑𝜏2
+ 𝑥1 = 0, 

𝜔0
2  

𝑑2𝑥1

𝑑𝜏2
+ 𝑥1 = −2𝜔0𝜔1

𝑑2𝑥1

𝑑𝜏2
− 𝛼2𝑥1

2 . 

 

17.7 Problem: Determine a two term of expansion for the frequency-amplitude relationship 

for the system generated by the equation 

𝑢 + 𝜔0
2𝑢 1 + 𝑢2 −1 = 0 

Solution: 

 Here 𝑢 = 0 is the centre. Putting 𝜏 = 𝜔𝑡, the given system reduces to 

𝜔2 𝑑2𝑢

𝑑𝜏2 + 𝜔0
2 𝑢 − 𝑢3 + 𝑢5 + ⋯ = 0      ………………..(1) 

Assuming expansion of the form  

𝜔 = 𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ 

                                       and 𝑥 𝜏; 𝜇 = 𝜇𝑢1 𝜏 + 𝜇2𝑢2 𝜏 + 𝜇3𝑢3 𝜏 + ⋯ 

                                                                 ………………………………………..(2) 

We have from (1), 
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 𝜔0 + 𝜇𝜔1 + 𝜇2𝜔2 + ⋯ 2
𝑑2

𝑑𝜏2
 𝜇𝑢1 + 𝜇2𝑢2 + 𝜇3𝑢3 + ⋯ 

+ 𝜔0
2  𝜇𝑢1 + 𝜇2𝑢2 + 𝜇3𝑢3 + ⋯ −  𝜇𝑢1 + 𝜇2𝑢2 + 𝜇3𝑢3 + ⋯ 3

+  𝜇𝑢1 + 𝜇2𝑢2 + 𝜇3𝑢3 + ⋯ 5 − ⋯ = 0. 

Equating like power of 𝜇 from both sides we obtained  

𝜇: 𝜔0
2 𝑑2𝑢1

𝑑𝜏2 + 𝜔0
2𝑢1 = 0   ……………………………………………………..(3) 

𝜇2: 𝜔0
2 𝑑2𝑢2

𝑑𝜏2 + 𝜔0
2𝑢2 = −2𝜔0𝜔1

𝑑2𝑢1

𝑑𝜏2 ………………….…..……………..(4) 

𝜇2: 𝜔0
2 𝑑2𝑢3

𝑑𝜏2 + 𝜔0
2𝑢3 = −𝜔1

2 𝑑2𝑢1

𝑑𝜏2 − 2𝜔0𝜔1
𝑑2𝑢2

𝑑𝜏2 + 𝜔0
2𝑢1

3 − 2𝜔0𝜔2
𝑑2𝑢4

𝑑𝜏2        ………(5) 

Solution of equation (3) is  

𝑢1 = 𝑎 cos(𝜏 + 𝜖) 

where a and 𝜖 are arbitrary constant. Substituting this in (4) we get,  

𝑑2𝑢2

𝑑𝜏2
+ 𝑢2 = −

2𝜔0

𝜔1
𝑎 cos(𝜏 + 𝜖) 

To avoid the secular term we must put𝜔1 = 0 and the solution of the above equation 

becomes  

𝑢2 = 𝑏 cos(𝜏 + 𝜖) 

Thus the equation (5) reduces to  

𝑑2𝑢3

𝑑𝜏2
+ 𝑢3 = 𝑢1

3 − 2
𝜔2

𝜔0

𝑑2𝑢1

𝑑𝜏2
 

 =
𝑎3

4
 cos 3 𝜏 + 𝜖 + 3 𝜏 + 𝜖  + 2

𝜔2

𝜔0
 𝑏 cos 𝜏 + 𝜖  

=
1

4
𝑎3 cos 3(𝜏 + 𝜖) + (

3

4
𝑎3 + 2𝑎

𝜔2

𝜔0
) cos(𝜏 + 𝜖) 

Eliminating the secular term gives 

𝜔2 = −
3

8
𝑎2𝜔0 . 

Thus, 𝜔 = 𝜔0 −
3

8
𝜔0𝑎

2𝜇2  
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Exercises: 

Determine a two term of expansion for the frequency-amplitude relationship for the system 

generated by the equations 

(i) 𝑢 + 𝜔0
2𝑢 1 + 𝑢2 −1 = 0 

Ans: 𝜔 = 𝜔0 −
3

8
𝜔0𝑎

2𝜇2  

(ii) 𝑢 + 𝜔0
2𝑢 + 𝛼𝑢5 = 0 

Ans: 𝜔 = 𝜔0 +
5

16
𝜔0

−1𝛼𝑎4𝜇2 

(iii) 𝑢 − 𝑢 + 𝑢3 = 0 

Ans: 𝜔2 = 2 − 3𝑎2𝜇2  

(iv) 𝑢 + 𝜔0
2𝑢 + 𝛼𝑢2𝑢 = 0 

Ans: 𝜔 = 𝜔0 −
1

4
𝜔0𝛼𝑎2𝜇2  
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UNIT-18 

 

Bifurcation Theory: Origin of Bifurcation, Bifurcation Value, Normalisation, 

Resonance, Stability of a fixed point. 

 

18.1: Introduction: 

Bifurcation means a structural change in the orbit of a system. The bifurcation of a 

system had been first reported by the French mathematician Henri Poincaré in his work. The 

study of bifurcation is concerned with how the structural change occurs when the 

parameter(s) are changing. The structural change and the transition behaviour of a system are 

the central part of dynamical evolution. The point at which bifurcation occurs is known as the 

bifurcation point. The behaviour of fixed point and the nature of trajectories may change 

dramatically at bifurcation points. The characters of attractor and repellor are altered, in 

general when bifurcation occurs. The diagram of the parameter values versus the fixed points 

of the system is known as the bifurcation diagram. This chapter deals with important 

bifurcations of one and two-dimensional systems, their mathematical theories, and some 

physical applications. 

 

The dynamics of a continuous system 𝑥 = 𝑓(𝑥, 𝜇) depends on the parameter𝜇𝜖𝑅. It is 

often found that 𝜇 crosses a critical value, the properties of dynamicalevolution, e.g., its 

stability, fixed points, periodicity etc. may change. Moreover, acompletely new orbit may be 

created. Basically, a structurally unstable system istermed as bifurcation. The bifurcation 

diagram is very useful in understanding thedynamical behaviour of a system. Bifurcations 

associated with a single parameter arecalled codimension-1 bifurcations. On the other hand, 

bifurcations connected withtwo parameters are known as codiemension-2 bifurcations. These 

bifurcations givemany interesting dynamics and have a wide range of applications in 

biological andphysical sciences. Various bifurcations and their theories are the integral part 

ofnonlinear systems. We discuss some important bifurcations in one- and 

twodimensionalsystems in the following sections. 

 

In preceding chapters, we have considered equations which contained parameters. For 

different value of this parameters, the behaviour of the solutions can be qualitatively 

different. Consider for instance the Van der Pol equation 
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𝑥 + 𝜇 𝑥2 − 1 𝑥 + 𝑥 = 0, 𝜇 > 0. 

If𝜇 = 0, then all solutions are periodic and the origin of the phase-plane is a centre. If 

0 < 𝜇 < 1, the origin is an unstable focus and there exists asymptotically stable periodic 

solution corresponding with a limit cycle around the origin. 

          In this chapter we shall discus change of nature of critical points and branching of 

solutions when a parameter passes a certain value; all this is called bifurcation theory. 

 

Example -18.1: 

Consider the equation  

𝑥 = 𝜇𝑥 − 𝑥2       ……………………….(18.1) 

The trivial solution 𝑥 = 0 is an equilibrium solution of (18.1). Another equilibrium solution 

is 𝑥 = 𝜇. This solution coincide if 𝜇 = 0; at the value 𝜇 = 0 both +𝑣𝑒 𝑎𝑛𝑑 − 𝑣𝑒 values of 𝜇, 

a non-trivial solution branches off 𝑥 = 0. In passing the value 𝜇 = 0 an exchange of stability 

of equilibrium solution 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 𝜇 takes place. This is illustrated in the bifurcation 

diagram of (18.1) which gives the equilibrium solution as a function of the bifurcation 

parameter 𝜇. 

 

Fig.-18.1 (Bifurcation Diagram) 

          In the above example we can predict the possibilities of the existence of a branching or 

bifurcation point by the implicit function theorem, for the solution of x of the equation 

𝐹 μ, x = 0 exists and unique if 
𝜕𝐹

𝜕𝑥
≠ 0. 

           Regarding critical points of differential equations we consider the equations or system 

of equations like 
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𝐹 μ, x = 0     …………………………..(18.2) 

with μ ∈ Rm , 𝑥 ∈ 𝑅𝑛 . 

            We now consider whether a solution (6.1) can bifurcate at certain values of the 

parameters μ = (μ1 , μ2 , … , μm ). By translation we can assume without loss of generality that 

we study bifurcation of trivial solution 𝑥 = 0 and so 𝐹 μ, 0 = 0. 

Consider the equation 𝑥 = 𝐹 (μ, x) with 𝐹  μ, 0 = 0 (solution 𝑥 = 0  ). The value of the 

parameter μ = μe  is called bifurcation value if there exists a non-trivial solution in each nbd 

of  μe , 0    in 𝑅𝑚 × 𝑅𝑛 . 

 

Example-18.2: 

Consider the equation  

𝑥 = 1 − 2 1 + μ 𝑥 + 𝑥2       ……………………………….(18.3) 

The equation  

1 − 2 1 + μ 𝑥 + 𝑥2 = 0. 

has the unique solution 𝑥(μ) if  −2 1 + μ + 2𝑥 ≠ 0 𝑖. 𝑒. , 𝑖𝑓 𝑥 ≠ 1 + μ. Equation (6.3) has 

the equilibrium solution 

𝑥 = 1 + μ ±  2μ + μ2 if μ ≤ −2 and μ > 0. 

Bifurcation can take place if  

1 + μ = 1 + μ ±  2μ + μ2  𝑖. 𝑒. , 𝑖𝑓 μ = 0 and μ = 2. 

18.2: Normalisation: 

 Let us consider equations of the form 

𝑥  = 𝐴𝑥 + 𝑓 (𝑥 )   ……………………………….(18.4) 

with A, a constant 𝑛 × 𝑛 matrix; 𝑓 (𝑥 ) can be expanded in the homogeneous vector 

polynomials which start with degree 2. 

Let,              𝑓  𝑥  = 𝑓2
     𝑥  + 𝑓3

     𝑥  + ⋯     , the vector polynomial 𝑓𝑚      𝑥  , 𝑚 ≥ 2. 

Consider the terms of the form𝑥1
𝑚1 , 𝑥2

𝑚2 , … , 𝑥𝑛
𝑚𝑛  where 𝑚1 + 𝑚2 + ⋯ + 𝑚𝑛 = 𝑚. 

If 𝜆 is constant then  

𝑓𝑚      𝜆𝑥  = 𝜆𝑚𝑓𝑚      𝑥  . 
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 If, we are introduced in the behaviour of the solution in a nbd of critical points 𝑥 = 0  , 

it is useful to introduce mean-identity transformation which simplified the vector function 

𝑓 (𝑥 ). Even better, we find smooth transformation which turned equation (18.4) into linear 

equation. However linearization by transformation is most case is not possible. 

Example-18.3: 

 Consider the equation 

𝑥 = 𝜆𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + ⋯              …………………………(18.5) 

               with 𝜆 ≠ 0, 𝑥 ∈ 𝑅. 

We introduce the mean-identity transformation in the form of a series 

𝑥 = 𝑦 + 𝛼2𝑦
2 + 𝛼3𝑦

3 +        ……………………………..(18.6) 

where we try to determine the coefficient 𝛼2 , 𝛼3 , …   such that the equation for y is Linear. If 

we can determine this coefficients, the transformation (18.6) represents a formal expansion 

w.r.to y. This may be convergent for 𝑦 = 0. Substituting (18.6) into (18.5) we get 

𝑦  1 + 𝛼2𝑦 + 3𝛼3𝑦
2 + ⋯ = 𝜆𝑦 +  𝜆𝛼2 + 𝑎2 𝑦

2 +  𝜆𝛼3 + 2𝑎2𝛼2 + 𝑎3 𝑦
3 + ⋯ 

    or, 𝑦 = 𝜆𝑦 +  𝑎2 − 𝜆𝛼2 𝑦
2 +  𝑎3 + 2𝜆𝛼2

2 − 2𝜆𝛼3 𝑦
3 + ⋯  

For linearization we must have, 

α2 =
a2

λ
 , α3 =

a2
2

λ2
+

a3

2λ
 . 

By this choice of 𝛼2 𝑎𝑛𝑑 𝛼3, equation (18.5) is normalised to degree 3. 

 In the dimension of the equation is higher than one, the theory becomes more 

complicate. Equations (6.4) in the form 

𝑥  = 𝐴𝑥 + 𝑓2
     𝑥  + 𝑓3

     𝑥  + ⋯ 

will be transformed by 

𝑥 = 𝑦 + 𝑕  (𝑦 )                   ……………………………….(18.7) 

with 𝑕  (𝑦 ) consisting of a, probably infinite sum of homogeneous vector polynomials 

𝑕𝑚
       𝑦  ,𝑚 ≥ 2. So we can write transformation of (18.7) as 

𝑥 = 𝑦 + 𝑕2
      𝑦  + 𝑕3

      𝑦  + ⋯ 

We would like to determine 𝑕   𝑦   such that 𝑥  = 𝐴𝑦 . Substituting (18.7) into (18.4) we get, 
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𝑥  = 𝑦  +
𝜕𝑕  

𝜕𝑦 
𝑦  = (𝐼 +

𝜕𝑕  

𝜕𝑦 
)𝑦   

= 𝐴 𝑦 + 𝑕   𝑦   + 𝑓  𝑦 + 𝑕   𝑦    

Inversion of (𝐼 +
𝜕𝑕   

𝜕𝑦  
) in a nbd of  𝑦 = 0   yields (gives) 

𝑦  =  𝐼 +
𝜕𝑕  

𝜕𝑦 
 

−1

  [𝐴𝑦 + 𝐴𝑕   𝑦  + 𝑓  𝑦 + 𝑕   𝑦   ] 

We start with removing the quadratic terms in (6.8). Expansion of 𝑕   and 𝑓  yields the equation 

𝜕𝑕2
     

𝜕𝑦 
 𝐴𝑦 − 𝐴𝑕2

     = 𝑓 2(𝑦 ) 

This is the homology equation for 𝑕2
     . Similarity, the terms of degree m vanish, we 

have the homology equation  

𝜕𝑕𝑚       

𝜕𝑦  
𝐴𝑦 − 𝐴𝑕𝑚

      = 𝑔 𝑚  𝑦  , 𝑚 ≥ 2.        …………………………….(18.9) 

For 𝑚 > 2, the right hand side 𝑔 𝑚  𝑦   can be expanded in terms of the solutions of the 

homology equation to degree mf. In considering the solvability of the homology equation 

(6.9) we observe that the left hand side is linear in 𝑕𝑚
      . The linear mapping is given by 

𝐿  𝐴 𝑕   =  
𝜕𝑕   

𝜕𝑦  
 𝐴𝑦 − 𝐴𝑕2

     (𝑦 ) 

Carries homogenous vector polynomials even in vector polynomials of the same degree. If 

the set of polynomials𝐿  𝐴 does not contain zero, 𝐿  𝐴 is invertible and equation (18.9) can be 

solved. For simplicity, we assume that all eigen values 𝜆1, 𝜆2, … , 𝜆𝑛  of the matrix A is in 

diagonal form. Written out in components 𝑕  𝑚 = (𝑕  𝑚1
, 𝑕  𝑚2

, … , 𝑕  𝑚𝑛
), we have from (18.9) 

 
𝜕𝑕   𝑚𝑖

𝜕𝑦  𝑗

𝑛
𝑗 =1 𝜆𝑗𝑦𝑗 − 𝜆𝑖𝑕𝑚 𝑖

 𝑦  = 𝑔 𝑚 𝑖
 𝑦  , (𝑖 = 1,2, … , 𝑛; 𝑚 ≥ 2).       ……….(18.10) 

The term in 𝑕𝑚 𝑖
 are all of the form 

𝑎𝑦1
𝑚1𝑦2

𝑚2 …𝑦𝑛
𝑚𝑛 = 𝑎𝑦(𝑚) 

where 𝑚 = 𝑚1, 𝑚2 , … , 𝑚𝑛 , a constant. The eigen value of A are 𝑒𝑖  and those of 𝐿  𝐴 are 𝑦(𝑚)𝑒𝑖  

with eigen values   𝑚𝑗
𝑛
𝑗 =1 𝑦𝑗 − 𝜆𝑖 𝑖 = 1,2, … , 𝑛 . If an eigen values  𝐿  𝐴 is zero, we call thisis 

resonance. If there is no resonance, equation (18.10) can be solved and the non-linear terms 

in (18.8) can be removed. 

 We summarise the above results in the following theorem- 
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Theorem-18.1: Poincare′ Theorem:  

 If the matrix A are non-resonant, the equation  

𝑥  = 𝐴𝑥 + 𝑓2
     𝑥  + 𝑓3

     𝑥  + ⋯ 

can be transformed into the linear equation 𝑦  = 𝐴𝑦   by the transformation 

𝑥 = 𝑦 + 𝑕2
      𝑦  + 𝑕3

      𝑦  + ⋯ 

18.3: Centre Manifolds: 

 Consider the equation  

𝑥  = 𝐴𝑥 + 𝑓  𝑥        ………………………….(18.11) 

           where A is constant 𝑛 × 𝑛 matrix and has eigen values with non-vanishing real part. 

The point 𝑥 = 0   to the corresponding manifolds of the equation 𝑦  = 𝐴𝑦 . If, one linearization 

we find eigen values zero or purely imaginary, bifurcation may arise. To study these 

phenomenon, we state the following theorem 

Theorem-18.2:  

Consider the equation  

𝑥  = 𝐴𝑥 + 𝑓  𝑥   𝑤𝑖𝑡𝑕 𝑥 ∈ 𝑅𝑛  and A is constant 𝑛 × 𝑛 matrix; 𝑥 = 0   is belated critical point. 

The vector function 𝑓  𝑥   𝑖𝑠 𝑐𝑘 , 𝑘 ≥ 2, if in a nbd of 𝑥 = 0   and lim 𝑥 →0 
 𝑓  𝑥   

 𝑥  
= 0. The 

stable and unstable manifolds of equation 𝑦  = 𝐴𝑦  are 𝐸𝑠  and 𝐸𝑘 , the space of eigen vectors 

corresponding with eigen values with zero real part is 𝐸𝑐 . There exists 𝑒𝑘  stable and unstable 

invariant manifolds 𝐸𝑠  and 𝐸𝑘  in 𝑥 = 0  . There exists a 𝑐𝑘−1 invariant manifolds 𝑊𝑐 , called 

centre manifold which is tangent to 𝐸𝑐  in 𝑥 = 0  ; if 𝑘 = ∞, then 𝑊𝑐  is in general 𝑐𝑚  with 

𝑚 ≤ ∞. 

18.4 Bifurcations in One-Dimensional Systems: 

 

 The dynamics of a vector field on the real line of a system is very restricted as we 

have seen in the preceding chapters. However, the dynamics in one-dimensional systems 

depending upon parameters is interesting and have wide applications in science and 

engineering. Consider a one-dimensional continuous system 

𝑥 (𝑡) = 𝑓(𝑥, 𝜇); 𝑥, 𝜇 ∈ ℝ    (18.12) 

depending on the parameter 𝜇, where 𝑓: ℝ × ℝ → ℝ is a smooth function of 𝑥 and 𝜇. The 

equilibrium points of (6.1) are the solutions of the equation 

𝑓(𝑥, 𝜇) = 0.1      (18.13) 
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The Eq. (18.13) clearly indicates that all the equilibrium points of the system (18.12) depend 

on the parameter 𝜇, and they may change their stabilities as 𝜇 varies. Thus, bifurcations of a 

one-dimensional system are associated with the stabilities of its equilibri um points. Such 

bifurcations are known as local bifurcations as they occur in the neighbourhood of the 

equilibrium points. Such types of bifurcations are occurred in the population growth model, 

outbreak insect population model, chemical kinetics model, bulking of a beam, etc. In the 

following subsections, three important bifurcations, namely the saddle-node, pitchfork, and 

transcritical bifurcations are discussed in depth for one-dimensional systems. 

 

18.4.1 Saddle-Node Bifurcation:  
 

Consider the one-dimensional system 

𝑥 (𝑡) = 𝑓(𝑥, 𝜇) = 𝜇 + 𝑥2; 𝑥 ∈ ℝ   (18.14) 

with 𝜇 as the parameter. Equilibri um points of (6.3) are obtained as 

𝑓(𝑥, 𝜇) = 0 ⇒ 𝜇 + 𝑥2 = 0 ⇒ 𝑥2 = −𝜇  (18.15) 

 

Depending upon the sign of the parameter 𝜇, we have three possibilities. When 𝜇 < 0, 

the system has two fixed points, 𝑥1,2
∗ = ± −𝜇̸. They merge at 𝑥∗ = 0 when 𝜇 = 0 and 

disappear when 𝜇 > 0. We shall now analyze the system's behavior under flow consideration 

in the real line. The system 𝑥 = 𝑓(𝑥, 𝜇) represents a vector field 𝑓(𝑥, 𝜇) on the real line and 

gives the velocity vector 𝑥 at each position 𝑥 of the flow. As we discussed earlier, arrows 

point to the right direction if 𝑥 > 0 and to the left if 𝑥 < 0. So, the flow is to the right 

direction when 𝑥 > 0 and to the left when 𝑥 < 0. At the points where 𝑥 = 0, there are no 

flows and such point 𝑠 are called fixedpoints or equilibrium points of the system (18.14). The 

graph of the vector filed 𝑓(𝑥, 𝜇) in the 𝑥 − 𝑥  plane represents a parabola, as shown in Fig. 

 When 𝜇 < 0, there are two fixed points of the system and are shown in Fig. 6.la. 

According to the flow imagination, the figure indicates that the fixed point at 𝑥 =  −𝜇 is 

unstable, whereas the fixed point at 𝑥 = − −𝜇 is stable. From the figure, we also see that 

when 𝜇 approaches to zero from blow, the parabola moves up and the two fixed points move 
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toward each other and they merge at 𝑥 = 0 when 𝜇 = 0. There are no fixed points of the 

system for 𝜇 > 0, as shown in Fig. 6.1c. This is a very simple system but its dynamics is 

highly interesting. The bifurcation in the dynamics occurred at 𝜇 = 0, since the vector fields 

for 𝜇 < 0 and 𝜇 > 0 are qualitatively different. The diagram of the parameter 𝜇 versus the 

fixed point 𝑥∗ is known as the bifurcation diagram of the system and the point 𝜇 = 0 is called 

the bifurcation point or the tuming point of the trajectory of the system. The bifurcation 

diagram is shown in Fig.  

 

 This is an example of a saddle-node bifurcation even though the system is one-

dimensional. Actually, it is a subcritical saddle-node bifurcation, since the fixed points exist 

for values of the parameter below the bifurcation point 𝜇 = 0. Consider another simple one-

dimensional system 

𝑥 = 𝜇 − 𝑥2; 𝑥, 𝜇 ∈ ℝ    (18.16) 

with parameter 𝜇. This system can be obtained from (18.14) under the transformation 

(𝑥, 𝜇) ↦ (−𝑥, −𝜇). So, the qualitative behaviour of the system (18.16) is just as the opposite 

of (18.14). Hence the system (18.16) has two equilibrium points 𝑥1,2
∗ = ± 𝜇 for 𝜇 > 0, they 

merge at 𝑥∗ = 0 when 𝜇 = 0 and disappear for 𝜇 < 0. Thus, the qualitative behaviour of 

(18.16) is changing as 𝜇 passes through the origin. Hence 𝜇 = 0 is the bifurcation point of 

the system (18.16). This is an example of a supercritical saddle-node bifurcation, since the 

equilibrium points exist for values of 𝜇 above the bifurcation point𝜇 = 0. The name 'saddle-

node bifurcation' is not properly given because the actual bifurcation that occurred in this 

one-dimensional system is inconsistent with the name "saddle-node." The name is coined in 

comparison to the bifurcation pattem in two-dimensional systems in which a saddle and a 

node coincide and then disappear as the parameter exceeds the critical value. The saddle-node 

bifurcation in a one-dimensional system is connected with appearance and disappearance 

(vice versa) of the fixed points of the system as the parameter exceeds the critical value. 
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18.4.2 Pitchfork Bifurcation: 

We now discuss pitchfork bifurcation in a cne-dimensional system which appears 

when the system has symunetry between left and right directions. In such a system, the fixed 

points tend to appear and disappear in symmetrical pair. For example, consider the one-

dimensional system 

𝑥 (𝑡) = 𝑓(𝑥, 𝜇) = 𝜇𝑥 − 𝑥3; 𝑥, 𝜇 ∈ ℝ    (18.17) 

Replacing 𝑥 by −𝑥 in (18.17), we get 

−𝑥 = −𝜇𝑥 + 𝑥3 = − 𝜇𝑥 − 𝑥3 

⇒ 𝑥 = 𝜇𝑥 − 𝑥3  

Thus the system is invariant under the transformation 𝑥 ↦ −𝑥. The equilibrium points of the 

system are obtained as 

𝑓(𝑥, 𝜇) = 0 ⇒ 𝜇𝑥 − 𝑥3 = 0 ⇒ 𝑥 = 0, ± 𝜇. 

For 𝑓(𝑥, 𝜇) = 𝜇𝑥 − 𝑥3, 

∂𝑓

∂𝑥
(𝑥, 𝜇) = 𝜇 − 3𝑥2,

∂𝑓

∂𝑥
(0, 𝜇) = 𝜇,

∂𝑓

∂𝑥
(± 𝜇, 𝜇) = −2𝜇. 

 

When 𝜇 = 0, the system has only one equilibrium point 𝑥∗ = 0 and it is a equilibrium 

point in nature, since (0,0) = 0. For 𝜇 > 0, three equilibrium points occur at 𝑥∗ = 0, ± 𝜇, in 

which the equilibrium point origin  𝑥∗ = 0  is a source (unstable) and the other two 

equilibrium points are sink (stable). For 𝜇 < 0, the system has only one stable equilibrium 

point at the origin. The phase diagram in the 𝑥 − 𝑥  plane is depicted in Fig. 

From the diagram we see that when 𝜇 increases from negative to zero, the equilibrium 

point origin is still stable but much more weakly, because of its nonhyperbolic nature. When 

𝜇 > 0, the origin becomes unstableequilibrium point and two new stable equilibrium points 

appear on either side of the origin located at 𝑥 = − 𝜇 and 𝑥 =  𝜇. The bifurcation diagram 

of the system is shown in Fig. 6.4. From the pitchfork-shape bifurcation diagram, the name 

'pitchfork' becomes clear. But it is basically a pitchfork trifurcation of the system. The 

bifurcation for this vector field is called a supercritical pitchfork bifurcation, in which a stable 
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equilibrium bi furcates into two stable equilibria. Transforming (𝑥, 𝜇) into (−𝑥, −𝜇), we can 

directly obtain another pitchfork bifurcation, the subcritical pitchfork bifurcation, described 

by the system 

𝑥 (𝑡) = 𝜇𝑥 + 𝑥3.   (18.18) 

 

This system has three equilibrium points 𝑥∗ = 0, ± −𝜇 for 𝜇 < 0, in which the equilibrium 

point 𝑥∗ = 0 is stable and the other two are unstable. For 𝜇 > 0, it has only one equilibrium 

point 𝑥∗ = 0, which is unstable. 

 

18.4.3 Transcritical Bifurcation: 

There are many parameter-dependent physical systems for which an equilibrium point 

must exist for all values of a parameter of the system and can never disappear. But it may 

change its stability character as the parameter varies. The transcritical bifurcation is one such 

type of bifurcation in which the stability characters of the fixed points are changed for 

varying values of the parameters. Consider the one-dimensional system 

𝑥 = 𝑓(𝑥, 𝜇) = 𝜇𝑥 − 𝑥2; 𝑥 ∈ ℝ   (18.19) 

with 𝜇 ∈ ℝ as the parameter. The equilibrium points of this system are obtained as 

𝑓(𝑥, 𝜇) = 0 ⇒ 𝜇𝑥 − 𝑥2 = 0 ⇒ 𝑥 = 0, 𝜇. 

Thus the system has two equilibrium points 𝑥∗ = 0, 𝜇. We calculate 

∂𝑓

∂𝑥
(𝑥, 𝜇) = 𝜇 − 2𝑥, 𝑠0,

∂𝑓

∂𝑥
(0, 𝜇) = 𝜇,

∂𝑓

∂𝑥
(𝜇, 𝜇) = −𝜇. 
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This shows that for 𝜇 = 0 the system has only one equilibrium point at 𝑥∗ = 0, which is 

nonhyperbolicequilibrium points. For 𝜇 ≠ 0, it has two distinct equilibrium points 𝑥∗ = 0, 𝜇, 

in which the equilibrium point origin is a source (unstable) for 𝜇 > 0 and it is a sink (stable) 

for 𝜇 < 0. The other equilibrium point 𝑥∗ = 𝜇 is unstable if 𝜇 < 0 and stable for 𝜇 > 0. The 

phase diagrams for the above three cases are shown in Fig.  

 

This type of bifurcation is known as transcritical bifurcation. In this bifurcation, an exchange 

of stabilities has taken place between the two fixed points of the system. The bifurcation 

diagram is presented in Fig. 

 
 

18.5: Bifurcation of Equilibrium Solutions Hopf Bifurcation: 

Consider the equation  

𝑥  = 𝐴(𝜇)𝑥 + 𝑓  𝜇, 𝑥       …………………(18.20) 

𝑤𝑖𝑡𝑕 𝑥 ∈ 𝑅𝑛 , 𝜇-being a parameter in R. We suspend this n-dimensional system in a (n+1)-

dimensional system by adding 𝜇 as new variable: 

𝑥  = 𝐴(𝜇)𝑥 + 𝑓  𝜇, 𝑥   

𝜇 = 0.        …………..…………..(18.21) 

Suppose, now that
𝜕𝑓 

𝜕𝑥 
 → 0  , 𝑎𝑠  𝑥  → 0 and consider the possibility of bifurcation of 

the solution𝑥 = 0  . If the matrix A has p-eigen values with zero real parts for a certain value 
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of 𝜇, equation (18.21) has (p+1)-dimensional centre manifold 𝑊𝑐 . We study 𝑊𝑐 , we simplify 

the equation by normalisation. 

Example-6.4: 

 Consider the system 

𝑥 = 𝜇𝑥 − 𝑥3 + 𝑥𝑦 

𝑦 = −𝑦 + 𝑦2 − 𝑥2        ………………..(18.22) 

We shall consider the bifurcation in a nbd of (0, 0) for small values of  𝜇 . We write 

the system (18.22) as 

𝑥 = 𝜇𝑥 − 𝑥3 + 𝑥𝑦 

𝑦 = −𝑦 + 𝑦2 − 𝑥2 

𝜇 = 0.        …………..…………..(18.23) 

The system, linearized in nbd of (0,0,0) has the eigen values  𝜇, −1,0 . So according to 

theorem (18.2), there exists a two dimensional centre manifold 𝑦 = 𝑕 𝑥, 𝜇 . 

Differentiating and by using the system (18.23) we find 

𝜕𝑕

𝜕𝑥
 𝜇𝑥 − 𝑥3 + 𝑥𝑕 = −𝑕 + 𝑕2 − 𝑥2 

𝜇 = 0 

Also a Taylor expansion for h w.r.to 𝑥 𝑎𝑛𝑑 𝜇 gives 

𝑕 𝑥, 𝜇 = −𝑥2 + ⋯ 

In the centre manifold, the flow is determined by the equation 

𝑢 = 𝜇𝑢 − 2𝑢3 + ⋯ 

𝜇 = 0. 

The Saddle-Node Bifurcation: 

 In the centre manifold, the flow is described by 𝑢 = 𝜇 − 𝑢2  𝑎𝑛𝑑 𝜇 = 0. If 𝜇 < 0, 

there exists no equilibrium solution. At 𝜇 = 0, two equilibrium solutions branch off, one of  

which is stable and the other unstable. 
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 The flow is described by the equation 𝑢 = 𝜇 − 𝑢2  𝑎𝑛𝑑 𝜇 = 0. Apart from (0, 0) there 

are always two equilibrium solutions with an change of stability when passing through 𝜇 = 0. 

 

The Pitch-Fonk Bifurcation: 

 The flow is described by the equation 𝑢 = 𝜇𝑥 − 𝑢3  𝑎𝑛𝑑 𝜇 = 0. If 𝜇 ≤ 0, there is one 

equilibrium solution which is stable. If 𝜇 > 0, there are three equilibrium solutions of which 

𝑢 = 0 is unstable, the two solutions which have branched off at 𝜇 = 0 are stable. This is 

called pitch-fonk bifurcation and it is supercritical. 

               On replacing −𝑢3 𝑏𝑦 + 𝑢3, the figure is reflected w.r.to the u-axis in this case the 

bifurcation is subcritical. 

Bifurcation of Periodic Solution(Hopf-Bifurcation): 

 Consider the system 

𝑥 = 𝜇𝑥 − 𝜔𝑦 + ⋯ 

𝑦 = 𝜔𝑥 + 𝜇𝑦 + ⋯ 

           where 𝜔(≠ 0) is fixed. If 𝜇 = 0, the eigen values of linear part are purely imaginary. 

Normalisation remove all quadratic and a number of cubic terms. To degree three, the normal 

form of above equation 

𝑢 = 𝑑𝜇𝑢 −  𝜔 + 𝑐𝜇 𝑣 + 𝑎 𝑢2 + 𝑣2 𝑢 − 𝑏 𝑢2 + 𝑣2 𝑣 + ⋯ 

𝑢 =  𝜔 + 𝑐𝜇 𝑢 + 𝑑𝜇𝑣 + 𝑏 𝑢2 + 𝑣2 𝑢 + 𝑎 𝑢2 + 𝑣2 𝑣 

In polar co-ordinate the system is 

𝑟 =  𝑑𝜇 + 𝑎𝑟2 𝑟 + ⋯ 

𝜃 = 𝜔 + 𝑐𝜇 + 𝑏𝑟2 + ⋯       …………..(18.24) 

At 𝜇 = 0, we have a pitch-fonk bifurcation of amplitude(r) equation which 

corresponds with a Hopf-bifurcation for the full system. A periodic solution of (18.24) exists 

if 𝑑 ≠ 0, 𝑎 ≠ 0 with amplitude =  −
𝑑𝜇

𝑎
 

1

2
 . 

 

 

 
 

 

 

The Trans-Critical Bifurcation: 
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1 What do you mean by 'bifurcation' of a system? 

2 Formulate one physical system in which bifurcation occurs for changing values of the 

parameter. Draw also bifurcation diagram. 

3 Find the critical value of 𝜇 in which bifurcation occurs for the following systems: 

(i) 

𝑥 = 𝜇𝑥 + 𝑥2, (ii) 𝑥 = 1 + 𝜇𝑥 + 𝑥2, (iii) 𝑥 = 𝜇𝑥 + 𝑥3, (iv) 𝑥 = 𝜇𝑥 − 𝑥3,

𝑥 = 𝑥2 − 𝜇, 𝜇 ∈ ℝ, (v) 𝑥 = 𝜇𝑥 + 𝑥2 − 𝑥3 + 𝑥4, (vi) 𝑥 = −𝜇1𝑥 − 𝜇2𝑥
2.

 

4 Determine the bifurcation point  𝜇0 , 𝑥0  for the system 𝑥 = 𝜇𝑥 − 𝑐𝑥2, (𝑐 ≠ 0). 

Sketch the phase portraits for 𝜇 < 𝜇0 and 𝜇 > 𝜇0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercises:  
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UNIT-19 

 

Bifurcation of equilibrium solutions – the saddle node bifurcation, the pitch-fork bifurcation, 

Hopf-bifurcation. 
 

 

19.1 Introduction:  

The dynamics of a continuous system 𝑥 = 𝑓(𝑥, 𝜇) depends on the parameter𝜇𝜖𝑅. It is 

often found that 𝜇 crosses a critical value, the properties of dynamical evolution, e.g., its 

stability, fixed points, periodicity etc. may change. Moreover, a completely new orbit may be 

created. Basically, a structurally unstable system is termed as bifurcation. The bifurcation 

diagram is very useful in understanding the dynamical behaviour of a system. Bifurcations 

associated with a single parameter are called codimension-1 bifurcations. On the other hand, 

bifurcations connected with two parameters are known as codiemension-2 bifurcations. These 

bifurcations give many interesting dynamics and have a wide range of applications in 

biological and physical sciences. Various bifurcations and their theories are the integral part 

of nonlinear systems. We discuss some important bifurcations in one- and two dimensional 

systems in the following sections. 

 

19.2 Bifurcations in One-Dimensional Systems: A General Theory:  

So far we have discussed bifurcations based on the flow of vector fields. We now 

derive a general mathematical theory for bifurcations in one-dimensional systems. Consider a 

general one-dimensional system 

𝑥 (𝑡) = 𝑓(𝑥, 𝜇); 𝑥, 𝜇 ∈ ℝ   (19.1) 

where 𝑓: ℝ × ℝ → ℝ is a smooth function. If 𝜇0 be the bifurcation point and 𝑥0 be the 

corresponding equilibrium point of the system, then 𝑥0 is nonhyperbolic if 

∂𝑓

∂𝑥
 𝑥0, 𝜇0 = 0.    (19.2) 

We first establish the condition for the saddle-node bifurcation. 
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19.2.1 Saddle-Node Bifurcation: 

 

We assume that 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 ≠ 0      (19.3) 

Then by the implicit function theorem, there exists a unique smooth function 𝜇 = 𝜇(𝑥) with 

𝜇 𝑥0 = 𝜇0, in the neighborhood of  𝑥0, 𝜇0  such that 𝑓(𝑥, 𝜇(𝑥)) = 0. Differentiating the 

equation 𝑓(𝑥, 𝜇(𝑥)) = 0 with respect to 𝑥, we have 

0 =
d𝑓

d𝑥
(𝑥, 𝜇(𝑥)) =

∂𝑓

∂𝑥
(𝑥, 𝜇(𝑥)) +

∂𝑓

∂𝜇
(𝑥, 𝜇(𝑥))

d𝜇

d𝑥
(𝑥)  (19.4) 

Therefore, at  𝑥0, 𝜇0 , we get 

∂𝑓

∂𝑥
 𝑥0, 𝜇0 +

∂𝑓

∂𝜇
 𝑥0, 𝜇0 

d𝜇

d𝑥
 𝑥0 = 0

⇒
d𝜇

d𝑥
 𝑥0 = −

∂

∂𝑥
 𝑥0 ,𝜇0 

∂𝑓

∂𝜇 2 𝑥0,𝜇0 

⇒
d𝜇

d𝑥
 𝑥0 = 0

   (19.5) 

Again, differentiating the equation 𝑓(𝑥, 𝜇(𝑥)) = 0 with respect to 𝑥 twice, we get 

0 =
d2𝑓

d𝑥2 (𝑥, 𝜇(𝑥)) =
d

d𝑥
 
∂𝑓

∂𝑥
(𝑥, 𝜇(𝑥)) +

∂𝑓

∂𝜇
(𝑥, 𝜇(𝑥))

d𝜇

d𝑥
(𝑥) 

=
∂2𝑓

∂𝑥2 (𝑥, 𝜇(𝑥)) + 2
∂2𝑓

∂𝑥 ∂𝜇
(𝑥, 𝜇(𝑥))

d𝜇

d𝑥
(𝑥) +

∂2𝑓

∂2𝜇
(𝑥, 𝜇(𝑥))  

d𝜇

d𝑥
(𝑥) 

2

+
∂𝑓

∂𝜇
(𝑥, 𝜇(𝑥))

d2𝜇

d𝑥2 (𝑥)

 (19.6) 

Therefore, at  𝑥0, 𝜇0 , 

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 +

∂𝑓

∂𝜇
 𝑥0, 𝜇0 

d2𝜇

d𝑥2
 𝑥0 = 0.    (19.7) 

Now, recall the saddle-node bifurcation diagram of the system. In this diagram, the unique 

curve 𝑥 = 𝜇2  of fixed points, passing through (0,0), lies entirely on only one side of the 

bifurcation point 𝜇 = 0. This will be possible only if 

d2𝜇

d𝑥2
≠ 0 

in the neighborhood of (𝑥, 𝜇) = (0,0). Compared to this, we take 
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d2𝜇

dx
 𝑥0 ≠ 0. 

Therefore from (19.7), we see that 

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 ≠ 0.      (19.8) 

We state the result in the following theorem. 

 

Theorem 19.1 (Saddle-node bifurcation) Suppose the system 𝑥 (𝑡) = 𝑓(𝑥, 𝜇), 𝑥, 𝜇 ∈ ℝ has an 

equilibrium point 𝑥 = 𝑥0 at 𝜇 = 𝜇0 satisfying the conditions 

𝑓 𝑥0, 𝜇0 = 0,
∂𝑓

∂𝑥
 𝑥0, 𝜇0 = 0. 

If 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 ≠ 0,

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 ≠ 0, 

then the system has a saddle-node bifurcation at  𝑥0, 𝜇0 . 

Similarly, one can easily derive the conditions under which the system 𝑥 (𝑡) = 𝑓(𝑥, 𝜇), 𝑥, 𝜇 ∈

ℝ possess transcritical and pitchfork bifurcations. In this book, we only state the following 

theorem for these two bifurcations.  

Theorem 𝟏𝟗. 𝟐 (Transcritical and pitchfork bifurcations) Suppose the system 𝑥 (𝑡) =

𝑓(𝑥, 𝜇), 𝑥, 𝜇 ∈ ℝ has an equilibrium point 𝑥 = 𝑥0 at 𝜇 = 𝜇0  satisfying the conditions 

𝑓 𝑥0, 𝜇0 = 0,
∂𝑓

∂𝑥
 𝑥0, 𝜇0 = 0. 

(i) If 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 = 0,

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 ≠ 0 and 

∂2𝑓

∂𝑥 ∂𝜇
 𝑥0, 𝜇0 ≠ 0 

then the system has a transcritical bifurcation at  𝑥0, 𝜇0 . 

(ii) If 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 = 0,

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 = 0,

∂2𝑓

∂𝑥 ∂𝜇
 𝑥0, 𝜇0 ≠ 0 and 

∂3𝑓

∂𝑥3
 𝑥0, 𝜇0 ≠ 0, 

then the system has a pitchfork bifiurcation at  𝑥0, 𝜇0 . 

We now derive the nomal forms of these bifurcations in one-dimensional systems. By normal 
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form of a system we mean the most simplified mathematical form from which one can easily 

understand the type of bifurcations occurred in the system. 

 

(a) Normal form of saddle-node bifurcation: 

Suppose the system  has an equilibrium point at 𝑥 = 𝑥0 for 𝜇 = 𝜇0 for which all the saddle-

node bifurcation conditions are satisfied, that is, 

𝑓 𝑥0, 𝜇0 = 0,
∂𝑓

∂𝑥
 𝑥0, 𝜇0 = 0,

∂𝑓

∂𝜇
 𝑥0, 𝜇0 ≠ 0 and 

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 ≠ 0,  (19.9) 

Expanding 𝑓(𝑥, 𝜇) in a Taylor series in the neighborhood of  𝑥0, 𝜇0 , we have 

𝑥 = 𝑓(𝑥, 𝜇)

= 𝑓 𝑥0, 𝜇0 +  𝑥 − 𝑥0 
∂𝑓

∂𝑥
 𝑥0, 𝜇0 +  𝜇 − 𝜇0 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 +

1

2!
 𝑥 − 𝑥0 

2
∂𝑓

∂𝑥2
 𝑥0, 𝜇0 

+ 𝑥 − 𝑥0  𝜇 − 𝜇0 
∂2𝑓

∂𝜋 ∂ ∂0

 𝑥0, 𝜇0 +
1

2!
 𝜇 − 𝜇0 

2
∂2𝑓

∂𝜇2
 𝑥0, 𝜇0 + ⋯

=  𝜇 − 𝜇0 
∂𝑓

∂𝜇
 𝑥0, 𝜇0 +

1

2!
 𝑥 − 𝑥0 

2
∂𝑓

∂𝑥2
 𝑥0, 𝜇0 + ⋯

= 𝛼 𝜇 − 𝜇0 + 𝛽 𝑥 − 𝑥0 
2 + ⋯                             (19.10)

 

where 𝛼 =
f̸

∂𝑗
 𝑥0, 𝜇0  and 𝛽 =

1𝛼𝑗

2𝑧𝛼2
 𝑥0, 𝜇0  are nonzero real. The Eq. (19.10) refers to as the 

normal form of the saddle-node bifurcation. This is a great advantage for determining the 

bifurcation which a system undergoes. 

 

(b) Normal form of transcritical bifurcation: 

Suppose that the system has an equilibrium point 𝑥 = 𝑥0 at 𝜇 = 𝜇0 for which the transcritical 

bifurcation conditions are satisfied as given in Theorem 19. 2( i). Using the Taylor series 

expansion of 𝑓(𝑥, 𝜇) in the neighborhood of  𝑥0, 𝜇0 , we have 

𝑥 = 𝑓(𝑥, 𝜇)

= 𝑓 𝑥0, 𝜇0 +  𝑥 − 𝑥0 
∂𝑓

∂𝑥
 𝑥0, 𝜇0 +  𝜇 − 𝜇0 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 +

1

2!
 𝑥 − 𝑥0 

2
∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 

+ 𝑥 − 𝑥0  𝜇 − 𝜇0 
∂2𝑓

∂𝑥 ∂𝜇
 𝑥0, 𝜇0 +

1

2!
 𝜇 − 𝜇0 

2
∂2𝑓

∂𝜇2
 𝑥0, 𝜇0 + ⋯

=  𝑥 − 𝑥0  𝜇 − 𝜇0 
∂2𝑓

∂𝑥 ∂𝜇
 𝑥0, 𝜇0 +

1

2!
 𝑥 − 𝑥0 

2
∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 + ⋯

= 𝛼 𝑥 − 𝑥0  𝜇 − 𝜇0 + 𝛽 𝑥 − 𝑥0 
2 + ⋯                        (19.11)

 

where 𝛼 =
∂𝑓

𝛼𝑞𝑗
 𝑥0, 𝜇0  and 𝛽 =

1/𝑓

2𝑖
 𝑥0, 𝜇0  are nonzero real. The Eq. (19.11) refers to the 

normal form of the transcritical bifurcation. 
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(c) Normal form of pitchfork bifurcation: 

Suppose that the system has an equilibrium point 𝑥 = 𝑥0 at 𝜇 = 𝜇0, satisfying all the 

pitchfork bifurcation conditions given in Theorem 19.2(ii). We now expand the function 

𝑓(𝑥, 𝜇) in the neighborhood of  𝑥0, 𝜇0  in Taylor series expansion as presented below. 

𝑥 = 𝑓(𝑥, 𝜇)

= 𝑓 𝑥0, 𝜇0 +  𝑥 − 𝑥0 
∂𝑓

∂𝑥
 𝑥0, 𝜇0 +  𝜇 − 𝜇0 

∂𝑓

∂𝜇
 𝑥0, 𝜇0 +

1

2
 𝑥 − 𝑥0 

2
∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 

+ 𝑥 − 𝑥0  𝜇 − 𝜇0 
∂2𝑓

∂𝑥 ∂𝜇
 𝑥0, 𝜇0 +

1

2
 𝜇 − 𝜇0 

2
∂2𝑓

∂𝜇2
 𝑥0, 𝜇0 

+
1

6
 𝑥 − 𝑥0 

3
∂3𝑓

∂𝑥3
 𝑥0, 𝜇0 +

1

2
 𝑥 − 𝑥0 

2 𝜇 − 𝜇0 
∂3𝑓

∂𝑥2 ∂𝜇
 𝑥0, 𝜇0 

+
1

2
 𝑥 − 𝑥0  𝜇 − 𝜇0 

2
∂3𝑓

∂𝑥 ∂𝜇2
 𝑥0, 𝜇0 +

1

6
 𝜇 − 𝜇0 

2
∂2𝑓

∂𝜇2
 𝑥0, 𝜇0 + ⋯

=  𝑥 − 𝑥0  𝜇 − 𝜇0 
∂2𝑓

∂𝑥 ∂𝜇
 𝑥0, 𝜇0 +

1

6
 𝑥 − 𝑥0 

3
∂3𝑓

∂𝑥3
 𝑥0, 𝜇0 + ⋯

= 𝛼 𝑥 − 𝑥0  𝜇 − 𝜇0 + 𝛽 𝑥 − 𝑥0 
3 + ⋯                     (19.12)

 

of the pitchfork bifurcation. 

Example 19. 𝟏 Show that the system 

𝑥 = 𝑥 1 − 𝑥2 − 𝑎 1 − 𝑒−𝑏𝑥   

undergoes a transcritical bifurcation at 𝑥 = 0 when the parameters 𝑎 and 𝑏 satisfy a certain 

relation to be determined. 

Solution;  Clearly, 𝑥 = 0 is an equilibrium point of the given system for all values of the 

parameters 𝑎 and 𝑏. This indicates that the system will exhibit a transcritital bifurcation. For 

small 𝑥, the expansion of 𝑒−𝑏𝑥  gives 

𝑒−𝑏𝑥 = 1 − 𝑏𝑥 +
𝑏2𝑥2

2!
− 𝑂 𝑥3 . 

Therefore, 

𝑥 = 𝑥 1 − 𝑥2 − 𝑎 1 − 𝑒−𝑏𝑥  

= 𝑥 1 − 𝑥2 − 𝑎  𝑏𝑥 −
𝑏2𝑥2

2!
+ 𝑂 𝑥3  

= (1 − 𝑎𝑏)𝑥 +
1

2
𝑎𝑏2𝑥2. [ Neglecting cube andhigher powers of  𝑥]

 

For transcritical bifurcation at 𝑥 = 0,1 − 𝑎𝑏 = 0, that is, 𝑎𝑏 = 1. Hence the system 

undergoes a transcritical bifurcation at 𝑥 = 0 when 𝑎𝑏 = 1. 
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Example 𝟏𝟗. 𝟐: Describe the bifurcation of the system 𝑥 = 𝑥3 − 5𝑥2 − (𝜇 − 8)𝑥 + 𝜇 − 4. 

Solution Let 𝑓(𝑥, 𝜇) = 𝑥3 − 5𝑥2 − (𝜇 − 8)𝑥 + 𝜇 − 4. The equilibrium points are given by 

𝑥3 − 5𝑥2 − (𝜇 − 8)𝑥 + 𝜇 − 4 = 0

⇒ (𝑥 − 1) 𝑥2 − 4𝑥 − 𝜇 + 4 = 0
 

Clearly, 𝑥 = 1 is a fixed point of the system for all values of 𝜇. The other two fixed points 

are 𝑥± = 2 ±  𝜇, which are real and distinct for 𝜇 > 0. They coincide with the fixed point 

𝑥 = 2 for 𝜇 = 0 and vanish when 𝜇 < 0. Therefore, the system has a saddle-node bifurcation 

at 𝑥 = 2 with 𝜇 = 0 as the bifurcation point. We can also verify this using Theorem 19. 1. 

Take 𝑥0 = 2 and 𝜇0 = 0. Now, calculate 

∂𝑓

∂𝑥
(𝑥, 𝜇) = 3𝑥2 − 10𝑥 + 8 − 𝜇,

∂𝑓

∂𝜇
(𝑥, 𝜇) = −𝑥 + 1,

∂2𝑓

∂𝑥2
(𝑥, 𝜇) = 6𝑥 − 10. 

We see that 

𝑓 𝑥0, 𝜇0 = 0,
∂𝑓

∂𝑥
 𝑥0, 𝜇0 = 0,

∂𝑓

∂𝜇
 𝑥0, 𝜇0 = −1 ≠ 0,

∂2𝑓

∂𝑥2
 𝑥0, 𝜇0 = 2 ≠ 0. 

Therefore, by Theorem 19. 1 the system has a saddle-node bifurcation at  𝑥0, 𝜇0 , where 

𝑥0 = 2 and 𝜇0 = 0. 

Example 19. 𝟑: Consider the system 𝑥 = 𝑥3 − 𝜇; 𝑥, 𝜇 ∈ ℝ. Does the system has any 

bifurcation in neighborhood of its fixed points? Justify. 

Solution Here 𝑓(𝑥, 𝜇) = 𝑥3 − 𝜇. The fixed points are given by 

𝑓(𝑥, 𝜇) = 0 ⇒ 𝑥3 − 𝜇 = 0 ⇒ 𝑥 = 𝜇1/3 . 

Calculate 

∂𝑓

∂𝑥
(𝑥, 𝜇) = 3𝑥2, so 

∂𝑓

∂𝑥
 𝜇1/3 , 𝜇 = 3𝜇2/3.  

The qualitative behavior of the system does not change with the variation of the parameter 𝜇. 

So, bifurcation does not occur in the neighborhood of its fixed points. 

 

19.3 Imperfect Bifurcation: 

Consider the system represented by the Eq. (18.3). Suppose this system exhibits a saddle-

node bifurcation at the point (𝑥, 𝜇) = (0,0). If we add a quantity 𝜀 ∈ ℝ in this equation and 

then apply Theorem 19. 1, we see that the system also has a saddle-node bifurcation at 

(𝑥, 𝜇) = (0, −𝜀). Thus an addition of the term 𝜀 in (18.3) does not change its bifurcation 

character. In similar way, addition of the term 𝜀𝑥 in the Eq. (18.3) will not produce any new 
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bifurcation pattern, provided that the parameter 𝜇 ≠ 0. This bifurcation is structurally stable. 

The other two bifurcations, mentioned earlier, are not structurally stable. They can alter under 

arbitrarily small perturbations and produce new bifurcations. These bi furcations are called 

imperfect bifurcations and the parameter (perturbation quantity) is known as the imperfection 

parameter. For example, consider the system 

𝑥 (𝑡) = 𝜀 + 𝜇𝑥 − 𝑥2      (19.13) 

where 𝜀, 𝜇 ∈ ℝ are parameters. If 𝜀 = 0, it reduces to the system (6.8) and so, it has a 

transcritical bifurcation. We shall now analyze the system for 𝜀 ≠ 0. The equilibrium points 

of (19.13) are the solutions of the equation 

𝑥 = 0 ⇒ 𝑠 + 𝜇𝑥 − 𝑥2 = 0

⇒ 𝑥 =
𝜇 ±  𝜇2 + 4𝜀

2
.

 

If 𝑔 < 0, then (19.13) has two distinct equilibrium points 

𝑥±
∗ =

𝜇 ±  𝜇2 + 4𝜀

2
 

when the parameter 𝜇 lies in (−∞, −2 −8) ∪ (2 −8, ∞) in which 𝑥+
∗  is stable and 𝑥−

∗  is 

unstable. These two equilibrium points merge at 𝑥∗ = 𝜇/2 when 𝜇 = ±2 −𝜀 and disappear 

when 𝜇 lies in (−2 −𝜀, 2 −𝜀). Thus, for 𝜀 < 0, the transcritical bifurcation for 𝜀 = 0 

perturbs into two saddle-node bifurcations at (− −𝑔, −2 −8) and ( −8, 2 −8) with 

bifurcation points 𝜇 = −2 −8 and 𝜇 = 2 −8, respectively. 

Again, if 𝜀 > 0, then  𝜇2 + 4𝜀 > 0 for all 𝜇. Therefore, in this case, the system has two 

distinct (nonintersecting) solution curves, one is stable and the other is unstable, and so no 

bifurcations will appear as 𝜇 varies. In conclusion, the addition of small quantity in a system 

will change the bifurcation character when the bifurcation pattem is not structurally stable. 

 

19.4 Bifurcations in Two-Dimensional Systems: 

Dynamics of two-dimension systems are vast and their qualitative behaviors are 

determined by the nature of equilibrium points, periodic orbits, limit cycles, etc. The 

parameters and their critical values for bifurcations are highly associated with system's 

evolution and have physical significances. The critical parameter value is a deciding factor 

for a system undergoing bifurcation solutions. We shall now formulate a simple problem 

where the critical value for qualitative change in the system can be obtained very easily. 

Consider a circular tube suspended by a string attached to its highest point and carrying a 

heavy mass 𝑚, which is rotating with an angular velocity 𝜔 about the vertical axis. 
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The angular motion of the mass 𝑚 is determined by the following equation without taking 

into account the damping force, 

𝑚𝑎𝜃 = 𝑚𝑎𝜔2sin⁡𝜃cos⁡𝜃 − 𝑚𝑔sin⁡𝜃

 or, 𝜃 =  𝜔2cos⁡𝜃 −
𝑔

𝑎
 sin⁡𝜃,

 

where 𝑎 is the radius of the circular tube and 𝑔 is the acceleration due to gravity and 𝜇 =

𝜔2𝑎/𝑔. The right-hand side of the above equation may be denoted by 

𝑓(𝜃, 𝜇) =
𝑔

𝑎
(𝜇cos⁡𝜃 − 1)sin⁡𝜃. 

The equilibrium positions are given by 𝑓(𝜃, 𝜇) = 0. Thus, there exist two positions of 

equilibrium and are given bysin⁡𝜃 = 0 ⇒ 𝜃 = 0, 𝜋, −𝜋 according to the problem and 

cos⁡𝜃 =
1

𝜇
=

8

𝜔𝜔2. 

If 𝜔2 < 𝑔/𝑎, that is, if 𝜇 < 1, then cos⁡𝜃 > 1 and so 𝜃 = 0 is the only position of 

equilibrium of the system, and it is stable for small 𝜃, 

  

d2𝜃

d𝑡2
= −

𝑔

𝑎
(1 − 𝜇)𝜃 

 

Any small displacement, say 𝜃 = 𝜃0 with 𝜃 = 0 will result in small oscillations about the 

lowest point 𝜃 = 0. 

As 𝜔 increases beyond the critical value 𝜔𝜍 >  
𝑐

𝑎
, the equilibrium at 𝜃 = 0 loses its stability 

and a new position of equilibrium 𝜃 = cos−1⁡ g/𝑎𝜔2  is created. This is a position of stable 

equilibrium. Thus, we see that a bifurcation occurs when the angular velocity 𝜔 crosses the 

critical value 𝜔𝑐𝑟 =  
1

𝑎
, that is, 𝜇 = 1.  
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This simple example illustrates how bifurcation occurs and how the behavior of the system 

alters before and after the bifurcating point. In the following subsections, we shall discuss 

few common bifurcations that frequently occur in two-dimensional systems, viz., (i) saddle-

node bifurcation, (ii) transcritical bifurcation, (iii) pitchfork bifurcation, (iv) Hopf bifurcation, 

and (v) homoclinic and heteroclinic bifurcations. 

 

19.4.1 Saddle-Node Bifurcation: 

 

Consider a parameter-dependent two-dimensional system 

𝑥 = 𝜇 − 𝑥2, 𝑦 = −𝑦; 𝜇 ∈ ℝ     (19.14) 

The fixed points of the system are the solutions of the equations 

𝒙 = 0, 𝑦 = 0 

 

which yield 

𝜇 − 𝑥2 = 0, 𝑦 = 0. 

For 𝜇 > 0, the Eq(19.14) hes two distinct fixed poimts at ( 𝜇, 0) and (− 𝜇, 0). These two 

fixed points merge at the origin (0,0) when 𝜇 = 0 and they varish when 𝜇 < 0. This is a 

sarre feature as we heve seen in cine-dinensional sadik-node bifuxation. We shall now 

deternine the stabilitis of the fixed points. This need to evaluate the Jacohian matrix of the 

system for kical stakility behavior and is given by 

𝐽(𝑥, 𝑦) =  
−2𝑥 0

0 −1
  

We first consider the case 𝜇 > 0. Hex the sysken has two fixed points ( 𝜇, 0) and (− 𝜇, 0). 

The Jacobian 
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𝑓( 𝜇, 0) =  −2 𝜇 0

0 −1
  

at the fixed point ( 𝜇, 0) has two eigenvahes (−2 𝜇) and (−1), which are xal and negative. 

Hence the fixed point ( 𝜇, 0) is a stable node. Sirnilarly, calculating the eigenvalues of 

𝐽(− 𝜇, 0) we can show that the fixed pcimt (− 𝜇, 0) is saddle. Consider the second case, 

𝜇 = 0. In thas case, the syittem has a single fixed peint (0,0). The Jacoltian matrix at (0,0) is 

𝐽(0,0) =  
0 0
0 −1

  

with eigenvalues 0, (−1). This indicats that the fixed point (0,0) is semi-stable. For 𝜇 < 0, 

the system has no fixed pcimts. 

Thus we see that the system (19.14) has two fixed points, one is a stable node and the other 

is a saddle point, when 𝜇 > 0. As 𝜇 decreasesi, the saddle and the stable node aprroach each 

other. They collide at 𝜇 = 0 and disappear when 𝜇 < 0. The phase portaits are shown for 

diffexent values of the parameter in Fig.  

 

From the phase diagram we see that when the parameter is positive, no matter how small, all 

trajectories in the region {(𝑥, 𝑦): 𝑥 > − 𝜇′} reach steadily at the stable node origin of the 

system. As soon as 𝜇 crosses the origin, an exchenge of stability lakes place and this clearly 

indicates in the phase portrait of the system. When 𝜇 is negative, atl trajectaries eventuatly 

excape to infinity. This type of hifuatation is known as saddle-node hifurcation. The mame 

"saddle-node" is because its hasic mechanism is the cotlision of two fixed points, viz, a 

saddle and a node of the system. Here 𝜇 = 0 is the bifuzation pcint. The hifurcation diagram 

is same as that for the onedimensional system. 

19.4.2 Transcritical Bifurcation: 

Consider a two-dimensional parametric system expressed by 

𝑥 = 𝜇𝑥 − 𝑥2, 𝑦 = −𝑦;     (19.15) 
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with parimeler𝜇 ∈ R. This system has always two distinct fixed points (0,0) and (𝜇, 0) for 

𝜇 ≠ 0. For 𝜇 = 0, these two fioed poimts merge at (0,0). This is why this bifusation is called 

as transcritical hifurcation. The Jacobian matrix of the system (19.15) is given by 

𝐽(𝑥, 𝑦) =  

𝛼

𝑑

𝛼

𝑘
𝑎

𝑑

𝛼

𝑏

 =  
𝜇 − 2𝑥 0

0 −1
  

At the poimt (0, 0), 

𝐽(0,0) =  
𝜇 0
0 −1

  

which has eigenvalues 𝜇 and (−1). Therefore, the fixed point (0,0) of the system (19.15) is 

a stable node if 𝜇 < 0 and it is a saddle point if 𝜇 > 0. For 𝜇 = 0, the fixed point is atmi-

stable. Agrin, at (𝜇, 0), 

𝐽(𝜇, 0) =  
−𝜇 0
0 −1

  

The eigenvalues of 𝐽(𝜇, 0) are (−𝜇) and (−1), showing that the fixed point (𝜇, 0) is a stable 

node if 𝜇 > 0, and a saddle pcint if 𝜇 < 0. The phase diagrams for different signs of 𝜇 are 

shown in Fig. 

 

From the diagram, we see that the behaviour of the system changes when the panmeker𝜇 

passes through the ofigin. In this stage, the saddle becomes a stablenode and the stable node 

becomes a saddle. That is, when 𝜇 passes through the origin from left, the fixed point origin 

changes to a saddle from a stable node and the fixed point (𝜇, 0) changes from a saddle to a 

stable node. This type of bifurcation is known as transcritical bifurcation. Here 𝜇 = 0 is the 

bifurcation point. The feature is same as in one-dimensional system where no fixed points are 

disappeared. 
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There are two types of pitchfork bifurcations, namely supercritical and subcritical pitchfork 

bifurcations. In the present section, we deal with these two bifurcations scenario, first the 

supercritical pitchfork bifurcation and then the subcritical pitchfork bifurcation will be 

illustrated.  

Consider a two-dimensional system represented by 

𝑥 = 𝜇𝑥 − 𝑥3, 𝑦 = −𝑦;     (19.16) 

where 𝜇 ∈ ℝ is the parameter. For 𝜇 < 0, the system (19.16) has only one equilibrium point 

at the origin. The Jacobian matrix at this fixed point is given by 

𝜇 0
𝐽(0,0) =   . 

0 −1

The eigenvalues of 𝐽(0,0) are 𝜇, (−1), showing that the fixed point ongin is a stable node. 

For 𝜇 > 0, the system has three fixed points (0,0), ( 𝜇, 0), and (− 𝜇, 0). The Jacobian 

matrix of (19.16) calculated at these fixed points are given by 

𝐽(0,0) =  
𝜇 0
0 −1

 , 𝐽( 𝜇, 0) =  
−2𝜇 0

0 −1
 , 𝐽(− 𝜇, 0) =  

−2𝜇 0
0 −1

 . 

The eigenvalues of 𝐽(0,0) are 𝜇, (−1), which are opposite in signs. So, the equilibri um point 

(0,0) is a saddle for 𝜇 > 0. Clearly, the eigenvalues of Jacobian matrix show that the other 

two fixed points are stable nodes. The phase diagrams for different values of the bifurcation 

parameter 𝜇 are presented in Fig.  

 

The diagram shows that as soon as the parameter 𝜇 crosses the bifurcation point origin, the 

fixed point origin bifurcates into a saddle point from a stable node. In this situation, it also 

gives birth to two stable nodes at the points ( 𝜇, 0) and (− 𝜇, 0). The amplitudes of the 

newly created stable nodes grow with the parameter. This type of bifurcation is known as 

supercritical pitchfork bifurcation. We shall now discuss the subcritical pitchfork bifurcation. 

Consider a parameter-dependent two-dimensional system represented by 

19.4.3 Pitchfork Bifurcation; 
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𝑥 = 𝜇𝑥 + 𝑥3, 𝑦 = −5       (19.17) 

with the parameter 𝜇 ∈ 𝐑. When 𝜇 < 0, the system (19.17) has three distinctflxed point, 

namely (0,0), ( 𝜇, 0), and (− 𝜇, 0). The Jacobians of the system evaluated at these fixed 

points are given by 

𝐽(0,0) −  
𝜇 0
0 −1

 , 𝐽( 𝜇, 0) −  
4𝜇 0
0 −1

 , 𝐽(− 𝜇, 0) −  
4𝜇 0
0 −1

 .  

The eigenvalues of 𝐽(0,0) are 𝜇, (−1), which are of same sign. Thus, the fixed point origin is 

a stable node for 𝜇 < 0. Similarly, calculating the eigenvalues of the other two Jacobian 

matrices of the system one can see that the fixed points (± 𝜇, 0) are saddle points. For 𝜇 >

0, the system has a single fixed point at the origin, which is saddle. If we draw the phase 

portrait of the system, then we can see that as soon as the parameter crosses the bifurcation 

point 𝜇 = 0, the stable node at the origin coincides with the sadiles and then bifurcates into a 

saddle. This type of bifurcation is known as subcritical pitchfork bifurcation. 

 

19.4.4 Hopf Bifurcation: 

So far we have discussed bifurcations of systems with real eigenvalues, either positive 

or negative, of the corresponding Jacobian matrix evaluated at the fixed points of the 

corresponding system. We shall now discuss a very interesting periodic bifurcation 

phenomenon for a two-dimensional system where the eigenvalues are complex. This type of 

bifurcating phenomenon in two-dimensional or higher dimensional systems was studied by 

the German Scientist EherhardHopf (1902-1983) and it was named Hopf bifurcation due to 

the recognition of his work. This type of bifurcation was also recognized by Henri Poincaré 

and later by A.D. Andronov in 1930. Hopf bifurcation occurs when a stable equilibrium point 

lossesits stability and gives birth to a limit cycle and vice versa. There are two types of Hopf 

bifurcations, viz., supercritical and subcritical Hopf bifurcations. When stable limit cycles are 

created for an unstable equilibrium point, then the bifurcation is called a supercritical Hopf 

bifurcation. In engineering applications point of view, this type of bifurcation is also termed 

as soft or safe bifurcation because the amplitude of the limit cycles build up gradually as the 

parameter varies from the bifurcation point. On the other hand, when an unstable limit cycle 

is created for a stable equilibrium point, then the bifurcation is called a subcritical Hopf 

bifurcation. It is also known as a hard bifurcation. In case of subcritical Hopf bifurcation, a 

steady state solution could bocome unstable as parameter varies and the nonzero solutions 

coukd tend to infinity. We shall now illustrate the supercritical and subcritical Hopf 

bifurcations below. 

 

19.4.4.1 Supercritical Hopf Bifurcation:  

Consider a two-dimensional system with parameter 𝜇 ∈ ℝ, 

𝑥 = 𝜇𝑥 − 𝑦 − 𝑥 𝑥2 + 𝑦2 , 𝑦 = 𝑥 + 𝜇𝑦 − 𝑦 𝑥2 + 𝑦2 .   (19.18) 
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The system has a unique fixod point at the origin. In polar coordinates, the system can be 

written as 

𝑟 = 𝜇𝑟 − 𝑟3 , 𝜃 = 1, 

which are decoupled, and so easy to analyze. The phase portraits for 𝜇 < 0 and 𝜇 > 0 are 

shown in Fig. 

 

When 𝜇 < 0, the fixed point origin (𝑟 = 0) is a stable spiral and all trajectories are attracted 

to it in anti-clockwise direction. For 𝜇 = 0, the origin is still a stable spiral, though very 

weak. For 𝜇 > 0, the origin is an unstable spiral, and in this case, there is a stable limit cycle 

at 𝑟 =  𝜇. We are now interested to see how the eigenvalues behave when the parameter is 

varying. The Jacobian matrix at the fixed point origin is calculated as 

𝐽(0,0) =  
𝜇 −1
1 𝜇

  

which has the eigenvalues (𝜇 ± 𝑖). Thus origin is a stable spiral when 𝜇 < 0 and an unstable 

spiral when 𝜇 > 0. Therefore as expected the eigenvalues cross the imaginary axis from left 

to right as the parameter changes from negative to positive values. Thus we see that a 

supercritical Hopf bifurcation occurs when a stable spiral changes into an unstable spiral 

surrounded by a limit cycle. 

19.4.4.2 Subcritical Hopf Bifurcation: 

Consider a two-dimensional system represented by 

𝑥 = 𝜇𝑥 − 𝑦 + 𝑥 𝑥2 + 𝑦2 − 𝑥 𝑥2 + 𝑦2 2

𝑦 = 𝑥 + 𝜇𝑦 + 𝑦 𝑥2 + 𝑦2 − 𝑦 𝑥2 + 𝑦2 2   (19.19) 
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where 𝜇 ∈ ℝ is the parameter. In polar coordinates, the system can be transformed as 

𝑟 = 𝜇𝑟 + 𝑟3 − 𝑟5 , 𝜃 = 1. 

This system has a unique fixed point at the origin. The phase portraits for 𝜇 < 0 and 𝜇 > 0 

are presented in Fig.  

 

 

From the phase diagram it is clear that when 𝜇 > 0, the fixed point origin (𝑟 = 0) is a stable 

spiral and all trajectories are attracted to it in anti-clockwise direction, and for 𝜇 < 0, it is an 

unstable spiral. The diagram also exhibits that the system has two limits cycles when 𝜇 < 0, 

one of which is stable and other is unstable. For 𝜇 > 0, it has only a stable limit cycle. All 

these cycles can be determined from the equation 𝜇 + 𝑟2 − 𝑟4 = 0. For 𝜇 < 0, the system 

(19.19) has two limit cycles at 

𝑟2 =
1 ±  1 + 4𝜇

2
, 

and for 𝜇 > 0, the unique limit cycle occurs at 
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𝑟2 =
1 +  1 + 4𝜇

2
. 

A sketch of 𝑟  versus  𝜇𝑟 + 𝑟3 − 𝑟5  for two different values of 𝜇 is shown in Fig.  

From this figure it is clear that when 𝜇 < 0, the limit cycle at 𝑟2 =
1+ 1+4𝑥

2
 is stable, while 

the limit cycle at 𝑟2 =
1− 1+28 

2
 is unstable, and for 𝜇 > 0, the limit cycle at 𝑟2 =

1+ 1+4𝑥 

2
 is 

stable. 

Theorem 19. 𝟑 (Hopf bifurcation) Let  𝑥0, 𝑦0  be an equilibrium point of a planer 

autonomous system 

𝑥 = 𝑓(𝑥, 𝑦, 𝜇), 𝑦 = 𝑔(𝑥, 𝑦, 𝜇) 

depending on some parameter 𝜇 ∈ ℝ, and let 

𝐽 =

 

 
 

∂𝑓

∂𝑥

∂𝑓

∂𝑦
∂𝑔

∂𝑥

∂𝑔

∂𝑦 

 
 

, 

the Jacobian matrix of the system evaluated at the equilibrium point has purely imaginary 

eigenvalues 𝜆 + (𝜇) = 𝑖𝜔, 𝜆 − (𝜇) = −𝑖𝜔; 𝜔 ≠ 0 at 𝜇 = 𝜇0. If 

(i) 
d

d
(Re⁡𝜆(𝜇)) =

1

2
> 0 at 𝜇 = 0, 

(ii)  𝑓𝜇𝑥 + 𝑔𝜇𝑦  = 1 ≠ 0, and 

(iii) 𝑎 = −
𝜇

8
≠ 0 for 𝜇 ≠ 0. 

where the constant 𝑎 is given by 

𝑎 =
1

16
 𝑓𝑥𝑥 + 𝑔𝑥𝑥𝑦 + 𝑓𝑥𝑦𝑦 + 𝑔𝑦𝑦𝑦  

+
1
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 𝑓𝑥𝑦  𝑓𝑥𝑥 + 𝑓𝑦𝑦  − 𝑔𝑥𝑦  𝑔𝑥𝑥 + 𝑔𝑦𝑦  − 𝑓𝑥𝑥𝑔𝑥𝑥 + 𝑓𝑦𝑦 𝑔𝑦𝑦  ,

 

evaluated at the equilibrium point, then a periodic solution bifurcates from the equilibrium 

point  𝑥0, 𝑦0  into 𝜇 < 𝜇0 if 𝑎 𝑓𝜇𝑥 + 𝑔𝜇  > 0 or into 𝜇 > 𝜇0 if 𝑎 𝑓𝜇𝑥 + 𝑔𝜇𝑦  < 0 Also, the 

equilibrium point is stable for 𝜇 > 𝜇0 (respectively 𝜇 < 𝜇0 ) and unstable for 𝜇 < 𝜇0 

(respectively 𝜇 > 𝜇0 ) if  𝑓𝜇𝑥 + 𝑔𝜇f < 0 (respectively > 0 ). In both the cases, the periodic 

solution is stable (respectively unstable) if the equilibrium point is unstable (respectively 

stable) on the side of 𝜇 = 𝜇0 for which the periodic solutions exist. 

We now illustrate the Hopf bifurcation theorem by considering the well-known van der Pol 

oscillator. The equation for van der Pol is given by 𝑥 + 𝜇 𝑥2 − 1 𝑥 + 𝑥 = 0, 𝜇 ≥ 0. Setting 

𝑥 = 𝑦, the equation can be written as 
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 𝑥 = 𝑦 = 𝑓(𝑥, 𝑦, 𝜇)

𝑦 = −𝑥 + 𝜇 1 − 𝑥2 𝑦 = 𝑔(𝑥, 𝑦, 𝜇)
  

The system has the equilibrium point  𝑥0, 𝑦0 = (0,0), and the corresponding Jacobian 

matrix at (0,0) has the eigenvalues 

𝜆±(𝜇) =
𝜇 ±  𝜇2 − 4

2
, 

which are complex for 0 ≤ 𝜇 < 2 and real for 𝜇 ≥ 2. For 𝜇 = 0, the eigenvalues are purely 

imaginary: 𝜆+(𝜇) = 𝑖, 𝜆−(𝜇) = −𝑖. Now, at the equilibrium point 

(i) 
d

d𝜇
(Re⁡𝜆(𝜇)) =

1

2
> 0 at 𝜇 = 0, 

(ii)  𝑓𝜇𝑥 + 𝑔𝜇𝑦  = 1 ≠ 0, and 

(iii) 𝑎 = −
𝜇

8
≠ 0 for 𝜇 ≠ 0. 

Also, at this point, we see that 𝑎 𝑓𝜇𝑥 + 𝑔𝜇𝑦  = −
𝜇

8
< 0 for 𝜇 > 0. So, by Theorem 19. 3, the 

system has a periodic solution (limit cycle) for 𝜇 > 0. The stability of the limit cycle depends 

on the sign of  𝑓𝜇𝜈 + 𝑔𝜇𝑞  , which is positive (equal to 1 ) at (0,0). Hence for 𝜇 > 0 the 

equilibrium point origin must be unstable and the limit cycle must be stable. 

Exercises: 

1. Determine the bifurcation points for the system 𝑥 = 𝜇 − 𝐴cos⁡(𝜋𝑥). Sketch the flow in the 
(𝑥, 𝑢) plane. 

2. Draw the bifurcation diagram for the following systems when the parameter 𝜇 ∈ ℝ varies: 

(i) 𝑟 = 𝑟(𝜇 + 𝑟), 𝜃 = −1 

(ii) 𝑟 = 𝑟(𝜇 − 𝑟) 𝜇 − 𝑟2 , 𝜃 = −1 

3. Discuss Hopf bifurcation for the system 𝑟 = 𝑟 𝜇 − 𝑟2 , 𝜃 = −1; 𝜇 ∈ ℝ. 

4. Plot phase portraits and also sketch the bifurcation diagrams for the following systems 
(i) 𝑥 = 𝑥, 𝑦 = 𝜇 − 𝑦4, 𝜇 ∈ ℝ 
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UNIT-20 

 

Randomness of orbits of a dynamical system: The Lorentz equations, Chaos, Strange 

attractors. 
 

20.1 Introduction: 

 A non-linear system can have a more complicated steady-state behaviour that is not 

equilibrium, periodic oscillation, or almost periodic oscillation. Such behaviour is referred to 

as chaos. Such of these chaotic motions exhibit randomness, despite the deterministic nature 

of the system.   

 In this chapter we shall sketch a number of  complicated phenomena which are tied to 

the concept of chaos and strange attractive we shall restrict ourselves to autonomous 

differential equation with dimension n≥ 3. 

20.2: The Lorentz Equation: 

The Massachusetts Institute of Technology (M.I.T.) Meteorologist Edward Norton 

Lorenz (1917-2008) in the year 1963 had derived a three-dimensional system from a 

drastically simplified model of convection rolls in atmospheric flow. The simplified model 

may be written in normalized form as follows: 

 

𝑥 = 𝜍(𝑦 − 𝑥)
𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧
𝑧 = 𝑥𝑦 − 𝑏𝑧

        (20.1) 

where 𝜍, 𝑟, 𝑏 > 0 are all parameters. The system (20.1) has two simple nonlinear terms 𝑥𝑧 

and 𝑥𝑦 in the second and third equations, respectively. Lorenz discovered that this simple 

looking deterministic system could have extremely erratic or complicated dynamics over a 

wide range of parameter values 𝜍, 𝑟, and 𝑏. The solutions oscillate irregularly in a bounded 

phase space. When he plotted the trajectories in three dimensions, he discovered a new 

concept in the theory of dynamical system. Moreover, unlike stable fixed points or limit 

cycle, the strange attractor appeared in the phase space is not a point neither a curve nor a 

surface. It is a fractal with fractional dimension between 2 and 3 . We shall study this simple 

looking system thoroughly below. 

Consider a fluid layer of depth 𝑕, confined between two very long, stress-free, rigid and 

isothermal, horizontal plates in which the lower plate has a temperature T0 and the upper 

plate has a temperature 𝑇1 with 𝑇0 > 𝑇1. Let Δ𝑇 = 𝑇0 − 𝑇1 be the temperature difference 

between the plates. As long as the control parameter the temperature difference Δ𝑇 is small, 

the fluid layer remains static and so it is stable. As Δ𝑇 crosses a critical value, this static fluid 

layer becomes unstable and as a result a convection roll appears in the fluid layer. This 
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phenomenon is known as thermal convection. We take the x-axis in the horizontal direction 

and the z-axis in the vertical direction. From the symmetry of the problem, all flow variables 

are independent of the y-coordinate and the velocity of the fluid in the y-direction is zero. 

Under Boussinesq approximations (the effects of temperature is considered only for body 

force term in the equation of motion), the governing equations of motions for incompressible 

fluid flows viz., the continuity equation, momentum equations, and thermal convection may 

be written for usual notations as (Batchelor, Chandrasekhar) 

 

∇ ⋅ 𝑉 = 0                                            (20.2)
∂𝑉

∂𝑡
+ (𝑉 ⋅ ∇)𝑊 = −

1

𝜌0
∇𝑝 + 𝑣∇2𝑉 −

𝜌

𝜌0
𝑔𝑧 

                      (20.3) 

  
∂𝑇

∂𝑡
+ (𝜈 ⋅ ∇)𝑇 = 𝑥∇2𝑇    (20.4) 

where 𝜌 = 𝜌(𝑇) is the fluid densily at vemperature 𝑇 as given by 

   𝜌(𝑇) = 𝜌0 1 − 𝑎 𝑇 − 𝑇0                         (20.5) 

𝜌0 = 𝜌 𝑇0  is the fluid density at the reference tempenture 𝑇0., (= 𝜇/𝜌) the kinematic 

viscosity of the fluid, 𝜇 heing the coefficiem of dynamic fluid viscosity, 𝛼 the coefficient of 

thermal expansion, 𝑥 the coefficient of thermal expansion, 𝑔 the acceleration of gravity 

acting in the downward direction, 𝑧 the wit vector aldng the 𝑧 axis, 𝜈 = (𝑢, 0, 𝑤) is the fluid 

vekcily at some instant 𝑡 in the convectional mootion, and 𝑇 = 𝑇(𝑥, 𝑧, 𝑡) is the temperatus of 

the fluid at that tirse. 

The boundary conditions are prescribed as follows: 

𝑇 = 𝑇0 at 𝑧 = 0 and 𝑇 = 𝑇1 at 𝑧 = 𝑕. 

Consider the perturbed quantities (when convection starts) 𝑇 ′ , 𝑝′  and 𝑝′  defined as 
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𝑇 = 𝑇𝑏(𝑧) + 𝑇𝑣 𝑥, 𝑧1𝑡 , 𝑝 = 𝑝𝑏 (𝑧) + 𝑝′ 𝑥, 𝑧1𝑡  and 𝜌 = 𝑝𝑏 (𝑧) + 𝜌 𝑥, 𝑧1𝑡 . 

where 𝑇𝑏(𝑧) = 𝑇0 −  𝑇0 − 𝑇1 & is the temperature at the skady state, 𝜌𝑏 (𝑧) = 𝑝0 1 −

𝛼 𝑇𝑏(𝑧) − 𝑇01   is the comreipending fluid density, and 𝑝𝑏(𝑧) is the comresponding pressure 

given by 𝑞𝑏/𝑑𝑧 = −𝑔𝑝𝑏(𝑧), which is chatined in the conduction stare and by putting 𝒚 = 0 

in the eqution of motion (20.3). 

Sulstituting these in the Fq. (20.3)-(20.5), we get 

∂𝑇 ′

∂𝑡
+ (𝑉 − ∇)𝑇 ′ −

 𝑇0−𝑇1 

𝑕
= 𝑘∇2𝑇𝑡

𝑝′ = −𝑝0𝛼𝑇 ′     (20.6) 

We have 

∂𝑉

∂𝑡
+ (𝑉, ∇)𝑉 = −

1

𝜌0
∇𝑝′ + 𝑣∇2𝑉 − 𝛼𝑇 ′𝑧    (20.7) 

The boundary conditions become 

𝑇 ′ = 0 at 𝑧 = 0, 𝑕       (20.8) 

Consider the dimensionless quantities 

𝑥∗ =
𝑥

𝑕
, 𝑧∗ =

𝑧

𝑕
, ∗∼

∗ =
𝑕

𝑘
2∼ , 𝑡∗ =

𝑘

𝑕2
𝑡, 𝑝∗ =

𝑕2

𝑘2
𝑝′ , 𝜃 =

𝑇 ′

𝑇0 − 𝑇1
 

where 𝜃∘ represents the temperature deviation. Then Eqs. (20.2), (20.6), and (20.7), 

respectively, become (omitting the asterisk (*) for the dimensionless quantities) 

∇ ⋅ 𝑉∼ = 0
∂∂𝑡∼
𝐽
∼

+ (𝑉∼ ⋅ ∇) 𝑉∼ = −
1

𝜌0
∇𝑝 + 𝜍∇2 𝑉∼ − 𝜍𝑅𝜃𝑧 

∂𝜃

∂𝑡
+ (𝑉∼ ⋅ ∇)𝜃 = ∇2𝜃

    (20.9) 

where 𝜍 = 𝑣/𝜅 is the Prandtl number measuring the ratio of fluid kinematic viscosity and the 

thermal diffusivity and 𝑅 = 𝛼𝑔 𝑇0 − 𝑇1 𝑕
3/𝑣𝜅 is the Rayleigh number characterizing 

basically the ratio of temperature gradient and the product of the kinematic fluid viscosity and 

the thermal diffusivity. Again, the boundary conditions become 

𝜃 = 0 at 𝑧 = 0,1.       (20.10) 

This is known as Rayleigh-Benard convection in the literature. Let 𝜓 = 𝜓(𝑥, 𝑧, 𝑡) be the 

steam function which is a scalar function representing a curve in the fluid medium in which 

tangent at each point gives velocity vector and satisfying the following relations for two-

dimensional flow consideration 
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𝑢 = −
∂𝜓

∂𝑧
, 𝑤 =

∂𝜓

∂𝑥
.       (20.11) 

Then the continuity equation is automatically satisfied. Also, in this case, the vorticity vector 

has only one nonzero component 𝜔 in the 𝑦-direction expressed by 

𝜔 =
∂𝑢

∂𝑧
−

∂𝑤

∂𝑥
= −

∂2𝜓

∂𝑧2 −
∂2𝜓

∂𝑥2 = −∇2𝜓.    (20.12) 

Taking curl of the 2
nd

Eq. of (20.9) and then projecting the modified equation in the 𝑦-

direction, we have 

∂𝜔

∂𝑡
+ (𝑉∼ ⋅ ∇)𝜔 = 𝜍∇2𝜔 − 𝜍𝑅

∂𝜃

∂𝑥
     (20.13) 

But, 

(∇∼ ⋅ ∇)𝜔 = 𝑢
∂𝜔

∂𝑥
+ 𝑤

∂𝜔

∂𝑧

= −
∂𝜓

∂𝑧

∂𝜔

∂𝑥
+

∂𝜓

∂𝑥

∂𝜔

∂𝑧

=
∂(𝜔, 𝜓)

∂(𝑥, 𝑧)

= 𝐽(𝜔, 𝜓)

 

Similarly, (𝑉∼ , ∇)𝜃 = 𝐽(𝜃, 𝜓). Therefore, the Eqs. (20.9) and (20.13), respectively, reduce to 

∂𝜃

∂𝑡
+ 𝐽(𝜃, 𝜓) − 𝑤 = ∇2𝜃

∂𝜔

∂𝑡
+ 𝐽(𝜔, 𝜓) = 𝜍∇2𝜔 − 𝜍𝑅

∂𝜃

∂𝑥

     (20.14) 

where 

𝜔 = −∇2𝜓.        (20.15) 

We assumed that the boundaries 𝑧 = 0,1 are stress-free, an idealized boundary conditions. So 

we have other boundary conditions as given by 

𝜓 =
∂2𝜓

∂𝑧2 = 0 at 𝑧 = 0,1.      (20.16) 

We shall now convert the above set PDEs (20.14) into ODEs using Galerkin expansion of 𝜓 

and 𝜃. Let the Galerkin expansions of 𝜓 and 𝜃 satisfying the boundary conditions be 

𝜓(𝑥, 𝑧, 𝑡) = 𝐴(𝑡)sin⁡(𝜋𝑧)sin⁡(𝑘𝑥).
𝜃(𝑥, 𝑧, 𝑡) = 𝐵(𝑡)sin⁡(𝜋𝑧)cos⁡(𝑘𝑥) − 𝐶(𝑡)sin⁡(2𝜋𝑧).

  (20.17) 

where 𝑘 is the wave number and 𝐴(𝑡), 𝐵(𝑡), and 𝐶(𝑡) are some functions of time 𝑡. Then 

𝜔 = −∇2𝜓 =  𝜋2 + 𝑘2 𝜓, ∇2𝜔 = −∇2𝜓 = − 𝜋2 + 𝑘2 2𝜓 and 𝐽(𝜔, 𝜓) = 0. 
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Therefore, the 2
nd

Eq. of (20.14) gives 

 𝜋2 + 𝑘2 
d𝐴

d𝑡
sin⁡(𝜋𝑧)sin⁡(𝑘𝑥) = 𝑘𝑅𝜍𝐵(𝑡)sin⁡(𝜋𝑧)sin⁡(𝑘𝑥)

−𝜍 𝜋2 + 𝑘2 2𝐴(𝑡)sin⁡(𝜋𝑧)sin⁡(𝑘𝑥).
 

This is true for all values of 𝑥 and 𝑧. Therefore, we must have 

 𝜋2 + 𝑘2 
d𝐴

d𝑡
= 𝑘𝑅𝜍𝐵(𝑡) − 𝜍 𝜋2 + 𝑘2 2𝐴(𝑡)

⇒
d𝐴

d𝑡
=

𝑘𝑅𝜍

 𝜋2+𝑘2 
𝐵(𝑡) − 𝜍 𝜋2 + 𝑘2 𝐴(𝑡)

   (20.18) 

Similarly, from the Eq. (20.13), we get 

d𝐵

d𝑡
= 𝑘𝐴(𝑡) −  𝜋2 + 𝑘2 𝐵(𝑡) − 𝜋𝑘𝐴(𝑡)𝐶(𝑡)

d𝐶

d𝑡
=

𝜋𝑘

2
𝐴(𝑡)𝐵(𝑡) − 4𝜋2𝐶(𝑡)

   (20.19) 

Rescale the variables 𝑡, 𝐴(𝑡), 𝐵(𝑡), and 𝐶(𝑡) as follows: 

𝜏 =  𝜋2 + 𝑘2 𝑡, 𝑋(𝜏) =
𝑘/𝑘𝑐

2 +  𝑘/𝑘𝑐 2
𝐴(𝑡),

𝑌(𝜏) =
 𝑘/𝑘𝑐 

2𝑅

𝑘𝑐
3 2 +  𝑘/𝑘𝑐 2 3

𝐵(𝑡) and 𝑍(𝜏) =
 2 𝑘/𝑘𝑐 

2𝑅

𝑘𝑐
3 2 +  𝑘/𝑘𝑐 2 3

𝐶(𝑡),

 

where 𝑘𝑐 =
𝜋

 2
 is the wave number corresponding to the convection threshold. Substituting 

these in the Eqs. (20.18)-(20.19), we finally obtain the Lorenz equations as 

 

d𝑥

d𝜏
= 𝜍(𝑌 − 𝑋)

d𝑦

d
= 𝑟𝑋 − 𝑌 − 𝑋𝑍

d

d𝜏
= 𝑋𝑌 − 𝑏𝑍  

 
 

 
 

       (20.20) 

where 𝑟 = 𝑅/𝑅𝑐  is known as the reduced Rayleigh number, 𝑏 = 8/ 2 +  𝑘/𝑘𝑐 
2 , and 

𝑅𝑐 =  𝜋2 + 𝑘2 3/𝑘2. Using the wave number corresponding to the convection threshold, 

that is, using 𝑘 = 𝑘𝑐 , we get 𝑅𝑐 = 27𝜋4/4 and 𝑏 = 8/3. The system (6.54) is an autonomous 

system of dimension three. The system, although looks very simple, is very complicated to 

solve analytically, because the system represents a set of nonlinear equations in ℝ3 with the 

nonlinear terms 𝑋𝑍 and 𝑋𝑌 in the 
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 In considering the phenomenon of connective in the atmosphere of the earth by hitting 

from below and cooling from above, Lorentz   derived the following system of non-linear 

equations;- 

𝑥 = 𝜍 𝑦 − 𝑥 , 

𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧,     …………….(20.21) 

𝑧 = 𝑥𝑦 − 𝑏𝑧 

In which 𝜍,r and b are the parameters in the sequel, we shall taken- 

𝜍 = 10, 𝑏 =
8

3
, and r can taken varies +ve values. First we taken 𝑟 = 28 and connect a 

numerical approximation of a solution which start in a nbd of the unstable equilibrium 

solution; If starts in 𝐸𝑢 , 20 that the orbits follows the unstable manifold 𝑊𝑢  . 

From the above orbit diagram for Lorenz system, the following qualitative features can be 

drawn: 

(a) The orbit is not closed; 

(b) The orbit diagram or the set of trajectories do not depict a transition stage but a well-

organized regular structure; 

(c) The orbit describes a number of loops on the left and on the right without any regularity in  

he number of loops and the loops on both sides are in opposite directions of rotations; 

(d) The number of loops on the left and on the right depends in a very sensitive way on the 

infinitesimal change of initial conditions. Transient solution does not exhibit any periodic 

pattern. 

(e) This is an attracting set with a dimension greater than two and was named “strange 

attractor” by Ruelle and Takens. 

 

A number of characteristic of the Lorentz equations easily derived. We discuss them briefly. 

For this we need the following lemma which we state without proof. 
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 Consider the equation 𝑥  = 𝑓 (𝑥 ) in 𝑅𝑛  and a domain D(0) in 𝑅𝑛  which is supposed to 

have a value 𝑣(0). The flow defines a mapping g of D(0) in 𝑅𝑛 , 𝑔: 𝑅𝑛 → 𝑅𝑛 , 𝐷 𝑡 =

𝑔𝑡𝐷 0 . For the value 𝑣(𝑡) of the domain D(t), we have  

𝑑𝑣

𝑑𝑡
 
𝑡=0

 =   𝛻  
𝐷(0)

 . 𝑓  𝑑𝑣. 

The characteristic are  

(i) The equation (20.21) have the following reflect symmetry: 

If replace 𝑥, 𝑦, 𝑧by −𝑥, −𝑦, +𝑧 then the equations have the same form. It follows that each 

solution 𝑥 𝑡 , 𝑦 𝑡 , 𝑧(𝑡) has a symmetric counterpart (−𝑥 𝑡 , −𝑦 𝑡 , +𝑧(𝑡)) which is also a 

solution. 

(ii) 𝑧-axis of the Lorenz system is invariant. 

If we initially take 𝑥 = 𝑦 = 0 in the Lorenz system (20.21), we see that 𝑥 = 𝑦 = 0 for all 

future time 𝑡. In this case, the system  gives 

𝑧 = −𝑏𝑧 ⇒ 𝑧(𝑡) = 𝑧(0)𝑒−𝑏𝑡 → 0 as 𝑡 → ∞. 

Therefore the 𝑧-axis, that is, 𝑥 = 𝑦 = 0 is an invariant set and all solutions starting on the 𝑧-

axis will tend to the origin (0,0,0) as 𝑡 → ∞. 

(iii) Lorenz system is dissipative in nature. 

In the dissipative system, the volume occupied in the phase space decreases as the system 

evolves in time. Let 𝑉(𝑡) be an arbitrary volume enclosed by a closed surface 𝑆(𝑡) in the 

phase space and let 𝑆(𝑡) changes to 𝑆(𝑡 + 𝑑𝑡) in the time interval d𝑡. Let 𝑛  be the outward 

drawn unit normal to the surface 𝑆. 𝑓 is the velocity of any point, then the dot product (𝑓
∼

⋅ 𝑛 ) 

is the outward normal component of velocity. 

Therefore, in time d𝑡, a small elementary area d𝐴 sweeps out a volume (𝑓
∼

⋅ 𝑛 )d𝐴𝑑𝑡. 

Therefore, 𝑉(𝑡 + 𝑑𝑡) = 𝑉(𝑡) + (volume swept out by small area of surface which is 

integrated over all such elementary areas). 

Hence we get 

𝑉(𝑡 + d𝑡) = 𝑉(𝑡) +   
𝑆

  (𝑓
∼

⋅ 𝑛 )d𝐴d𝑡

⇒
𝑉(𝑡 + d𝑡) − 𝑉(𝑡)

d𝑡
=   

𝑠

  (𝑓
∼

⋅ 𝑛 )d𝐴 =  (∇ ⋅ 𝑓)d𝑉[ Divergence Theorem] 

⇒ 𝑉  𝑡 =
d𝑉

d𝑡
=   

𝑉

   ∇ ⋅ 𝑓
∼
 d𝑉                               (20.22)

 

So for the Lorenz system, we have 

 

Lemma 20.1: 
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∇ ⋅ 𝑓
∼

=
∂

∂𝑥
(𝜍(𝑦 − 𝑥)) +

∂

∂𝑦
(𝑟𝑥 − 𝑦 − 𝑥𝑧) +

∂

∂𝑧
(𝑥𝑦 − 𝑏𝑧)

= −(𝜍 + 1 + 𝑏).

 

Therefore, from (20.22) 

𝑉 =   
𝑉

− (𝜍 + 1 + 𝑏)𝑑𝑉 = −(𝜍 + 1 + 𝑏)𝑉 

which gives the solution 𝑉(𝑡) = 𝑉(0)𝑒−(1+𝑎+𝑏)𝑡 , 𝑉(0) being the initial volume. This implies 

that the volumes in the phase space decreases (shrink) exponentially fast and finally reaches 

an attracting set of zero volume. Hence, Lorenz system is dissipative in nature. 

(iv) Lorenz system shows a pitchfork bifurcation at origin when 𝑟 → 1. 

The fixed points of the Lorenz system are obtained by solving the equations 

𝜍(𝑦 − 𝑥) = 0, 𝑟𝑥 − 𝑦 − 𝑥𝑧 = 0, 𝑥𝑦 − 𝑏𝑧 = 0. 

These give 

𝑥 = 𝑦 = 𝑧 = 0 and 𝑥 = 𝑦 = ± 𝑏(𝑟 − 1), 𝑧 = (𝑟 − 1). 

Clearly, the origin (0,0,0) is a fixed point for all values of the parameters. The system has 

another two fixed points for 𝑟 > 1, which are given by 

𝑥∗ = 𝑦∗ = ± 𝑏(𝑟 − 1), 𝑧∗ = (𝑟 − 1). 

Lorenz called these fixed points as 

𝑐+ = ( 𝑏(𝑟 − 1),  𝑏(𝑟 − 1), (𝑟 − 1)) and 

𝑐− = (− 𝑏(𝑟 − 1), − 𝑏(𝑟 − 1), (𝑟 − 1)).
 

Clearly, these two fixed points are symmetric in 𝑥 and 𝑦 coordinates. As 𝑟 → 1, they coincide 

with the fixed point origin, which gives a pitchfork bifurcation of the system. The fixed point 

origin is the bifurcating point. It is impossible for the Lorenz system to have either repelling 

fixed points or repelling closed orbits. 

(v) Linear stability analysis of the Lorenz system about the fixed point origin The linearized 

form of the Lorerz system about the fixed point origin is given by 

𝑥 = 𝜍(𝑦 − 𝑥)

𝑦 = 𝑟𝑥 − 𝑦

𝑧 = −𝑏𝑧

 

Now, the z-equation is decoupled so it gives 

𝑧 = −𝑏𝑧 ⇒ 𝑧(𝑡) = 𝑧(0)𝑒−𝑏𝑡 → 0 as 𝑡 → ∞. 

194



 

The other two equations can be written as 

 
𝑥 
𝑦 
 =  

−𝜍 𝜍
𝑟 1

  
𝑥
𝑦 . 

Hence sum of the diagonal elements of the matrix, 𝜏 = −𝜍 − 1 = −(𝜍 + 1) < 0 and its 

determinant Δ = (−𝜍)(−1) − 𝜍𝑟 = 𝜍(1 − 𝑟). If 𝑟 > 1, then Δ < 0 and so the fixed point 

origin is a saddle. Since the system is three dimensional, a new type of saddle is created. This 

saddle has one outgoing and two incoming directions. If 𝑟 < 1, then Δ > 0 and all directions 

are incoming and the fixed point origin is a sink (stable node). 

(vi) The fuxed point origin of the Lorenz system is globally stable for 0 < 𝑟 < 1. 

Let us consider the Lyapunov function for the Lorenz system as 

𝑉(𝑥, 𝑦, 𝑧) =
𝑥2

𝜍
+ 𝑦2 + 𝑧2. 

Then the directional derivative or orbital derivative is given by 

𝑉 =
2𝑥𝑥 

𝜍
+ 2𝑦𝑦 + 2𝑧𝑧 

⇒
𝑉 

2
=

𝑥𝑥 

𝜍
+ 𝑦𝑦 + 𝑧𝑧 

= 𝑥(𝑦 − 𝑥) + 𝑦(𝑟𝑥 − 𝑦 − 𝑥𝑧) + 𝑧(𝑥𝑦 − 𝑏𝑧)

= −𝑥2 + (1 + 𝑟)𝑥𝑦 − 𝑦2 − 𝑏𝑧2

= − 𝑥2 − 2𝑥  
1 + 𝑟

2
 𝑥𝑦 +  

1 + 𝑟

2
 

2

𝑦2 +  
1 + 𝑟

2
 

2

𝑦2 − 𝑦2 − 𝑏𝑧2

= − 𝑥 −  
1 + 𝑟

2
 𝑦 

2

−  1 −  
1 + 𝑟

2
 

2

 𝑦2 − 𝑏𝑧2 .

 

Thus we see that 𝑉 < 0 if 𝑟 < 1 for all (𝑥, 𝑦, 𝑧) ≠ (0,0,0) and 𝑉 = 0 iff (𝑥, 𝑦, 𝑧) = (0,0,0). 

Therefore, according to Lyapunov stability theorem, the fixed point origin of the Lorenz 

system is globally stable if the parameter 𝑟 < 1. 

(vii) Linear stability at the fixed points 𝑐±. 

Eigenvalues of the Jacobian matrix at the critical points 𝑐±of the Lorenz system satisfy the 

equation 

𝜆3 + (𝜍 + 𝑏 + 1)𝜆2 + 𝑏(𝜍 + 𝑟)𝜆 + 2𝜍𝑏(𝑟 − 1) = 0. 

For 1 < 𝑟 < 𝑟𝐻, the three roots of the above cubic equation have all negative real parts, 

where 

𝜍(3 + 𝑏 + 𝜍)
𝑟𝐻 = . 

𝜍 − 𝑏 − 1

If 𝑟 = 𝑟𝐻, two of the eigenvalues are purely imaginary, and so Hopf bifurcation occurs. This 

bifurcation turns out to be subcritical for 𝑟 < 𝑟𝐻, where two unstable periodic solutions exist 
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for two critical values of fixed points. At 𝑟 = 𝑟𝐻 these periodic solutions disappeared. For 

𝑟 > 𝑟𝐻 each of the two critical points have one negative real eigenvalue and two eigenvalues 

with positive real part, gives the unstable solution. 

(viii) Boundedness of solutions in the Lorenz system: 

There is a solid ellipsoid 𝐸 given by 

𝑟𝑥2 + 𝜍𝑦2 + 𝜍(𝑧 − 2𝑟)2 ≤ 𝑐 < ∞ 

such that all solutions of the Lorenz system enter 𝐸 within finite time and therefore remain in 

𝐸. 

To prove it we take 

𝜑(𝑥, 𝑦, 𝑧) ≡ 𝑟2 + 𝜍𝑦2 + 𝜍(𝑧 − 2𝑟)2 = 𝑐. 

We shall show that there exists 𝑐 = 𝑐𝑐𝑟  such that for all 𝑐 > 𝑐𝑐𝑟  the trajectory is directed 

toward to the ellipsoid 𝐸 at any point on the 𝐸. We have 

𝑛 𝜑 ⋅∼
∼ 

=
∇𝜑

|∇𝜑|
⋅∼
∼ 

=
1

|∇𝜑|
 
∂𝜑

∂𝑥
𝑥 +

∂𝜑

∂𝑦
𝑦 +

∂𝜑

∂𝑧
𝑧  

=
1

|∇𝜑|
[2𝑟𝑥𝜍(𝑦 − 𝑥) + 2𝜍𝑦(𝑟𝑥 − 𝑦 − 𝑥𝑧) + 2𝜍(𝑧 − 2𝑟)(𝑥𝑦 − 𝑏𝑧)]

= −
2𝜍

|∇𝜑|
 𝑟𝑥2 + 𝑦2 + 𝑏(𝑧 − 𝑟)2 − 𝑏𝑟2 < 0

 

So, the trajectory is directed inward to 𝐸 if (𝑥, 𝑦, 𝑧) lies inside of the ellipsoid 

𝐷 ≡ 𝑎2 + 𝑦2 + 𝑏(𝑧 − 𝑟)2 = 𝑏𝑟2. 

Now, for the ellipsoid 𝐷 we have 

𝑥2

( 𝑏𝑟)2
+

𝑦2

(𝑟 𝑏)2
+

(𝑧 − 𝑟)2

𝑟2
= 1, 

whose center is (0,0, 𝑟) and the length of the semi-axes are  𝑏𝑟, 𝑟 𝑏, 𝑟 respectively. 

Similarly, the center of the ellipsoid 𝐸 ≡ 𝑟2 + 𝜍𝑦2 + 𝜍(𝑧 − 2𝑟)2 = 𝑐 is (0,0,2𝑟) and the 

length of semi-axes are  𝑐/𝑟,  𝑐/𝜍, and  𝑐/𝜍, respectively. Since the 𝑥 and 𝑦 coordinates 

of the centers of both the ellipsoids are 0,0 respectively, the extent of the ellipsoid 𝐸 in the 𝑥 

and 𝑦 directions exceed the extent of the ellipsoid 𝐷 in the same direction if 

 𝑐/𝑟 >  𝑏𝑟;  𝑐/𝜍 > 𝑟 𝑏 

that is, 𝑐 > 𝑏𝑟2; 𝑐 > 𝑏𝜍𝑟2. 

Next, along the 𝑧-axis the ellipsoid 𝐷 is contained 

0 = 𝑟 − 𝑟 < 𝑧 < 𝑟 + 𝑟 = 2𝑟 
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while for the ellipsoid 𝐸, 

2𝑟 −  𝑐/𝜍 < 𝑧 < 2𝑟 +  𝑐/𝜍. 

But 2𝑟 < 2𝑟 +  𝑐/𝜍 for all 𝑐. So, the lowest point (0,0,0) of the ellipsoid 𝐷 lies above the 

lowest point (0,0,2𝑟 −  𝑐/𝜍) of the ellipsoid 𝐸 if2𝑟 −  𝑐/𝜍 < 0, that is, 𝑐 > 4𝑟2𝜍. 

Let 𝑐 = 𝑐𝜍 = max 𝑏𝑟2, 𝑏𝜍𝑟2 , 4𝑟2𝜍 . Then the ellipsoid 𝐷 lies entirely within the ellipsoid 

𝐸𝜍 . Hence for any point (𝑥, 𝑦, 𝑧) exterior to 𝐷, the trajectory is directed inward 𝐸. All such 

trajectories must enter 𝐸𝑐𝑟  after some finite time and remain inside as 𝑛 𝜑 ⋅ 𝑟 ∼ can never be 

positive (Fig. 6.21). 

 

20.3: A Mapping of R into R as a Dynamical System: 

 We now proceed to consider the dynamical behaviour of the mapping. For examples, 

in mathematical biology, suppose the number of individuals of population with species at 

time t is 𝑁𝑡 𝑁𝑡 ≥ 0 . After one unit of time this number is 

𝑁𝑡+1 = 𝑓(𝑁𝑡)       ………………………………..(20.23) 

where f is determined by the birth and death process. We expect that 𝑓 0 = 0, 𝑁𝑡+1 > 𝑁𝑡 . If 

𝑁𝑡  is small then 𝑁𝑡+1 < 𝑁𝑡 . 

 If the number is large because natural bounds of the amount of available space and 

food. A simple model is given by the logistic equation 

𝑁𝑡+1 = 𝑁𝑡 + 𝑟𝑁𝑡 −
𝑟

𝑘
𝑁𝑡

2      ………………………(20.24) 

where 𝑟 is the growth coefficient and k is the +𝑣𝑒 constant. 

                                        Let, 𝑥𝑡 =
𝑟𝑁𝑡

𝑘 1+𝑟 
 𝑎𝑛𝑑 𝑎 = (1 + 𝑟) 

Then the equations (20.24) becomes 

𝑥𝑡+1 = 𝑎𝑥𝑡(1 − 𝑥𝑡)  ….……………….(20.25) 

We choose 𝑥 ∈ [0,1]. If 𝑥0 is given, then (20.25) gives the value of 𝑥1 for 𝑡 = 1; substituting 

again produces 𝑥2 for 𝑡 = 2 and so on. 

Definition-1: Let M be the smooth manifold; the 𝑐 ′-mapping 𝜑: 𝑅 × 𝑀 → 𝑀 is a dynamical 

system for all 𝑥 ∈ 𝑀 if 

(i) 𝜑 0, 𝑥 = 𝑥 

(ii) 𝜑 𝑡, 𝜑 𝑡0, 𝑥  = 𝜑(𝑡 + 𝑡0 , 𝑥). 

For continuous system 𝑡, 𝑡0 ∈ 𝑅 and for discrete system 𝑡, 𝑡0 ∈ 𝑍. 
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 In the continuous system the mapping 𝜑 is called a flow on 𝑀 ⊂ 𝑅𝑛  generated by the 

autonomous initial value problem 𝑥  = 𝑓  𝑥  , 𝑥  𝑡0 = 𝑥 0 is also a dynamical system. 

 Returning to equation (20.23) we note that 𝑓(𝑁𝑡) may have the fixed point 𝑁0 (say) 

so that 𝑓 𝑁0 = 𝑁0 which is called a periodic solution on a periodic point of 𝑓. It is also 

possible that after applying the mapping 𝑘-times, we are returning in 𝑁0 so that 𝑓𝑘 𝑁0 =

𝑁0. 

Definition-2:Let 𝑥0 be the fixed point of 𝑓. Then 𝑥0 is asymptotically stable if there exists a 

nbd U of such that lim𝑛→∞ 𝑓𝑛  𝑥 = 𝑥0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑈. The point 𝑥0 is an asymptotically 

stable periodic point of 𝑓 with periodic 𝑘 if 𝑥0 is an asymptotically stable fixed point of 𝑓𝑘 . 

Definition-3:The domain of attraction of an asymptotically stable point 𝑥0 with period 𝑘is 

the set of points which converge to 𝑥0 by iteration of the mapping. The set  𝑓𝑘  𝑥0  𝑘=0
∞  is 

called the orbit of 𝑥0. 

Definition-4:A point 𝑥0 is called a periodic point of the mapping 𝑓 if the orbit of 𝑥0 is 

bounded and 𝑥0, 𝑘 ∈ 𝑁 exists such that lim𝑛→∞ 𝑓𝑛+𝑘 𝑥0  exists. In this case 𝑓 is called 

chaotic. 

20.4 Strange Attractors:  

 For certain values of parameters𝜍, 𝑟 𝑎𝑛𝑑 𝑏 the system 

𝑥 = 𝜍(𝑦 − 𝑥) 

𝑦 = 𝑟𝑥 − 𝑦 − 𝑥𝑧 

𝑧 = 𝑥𝑦 − 𝑏𝑧 

has a strong attraction set. The attractor A of this system is made up of an infinite number of 

branched surfaces which are interleaved and which intersect, however the trajectories of this 

system in A do not intersect but move from one branched surface to another as they circulate 

through the apparent branch. The closed invariant set A contains  

(i)  A countable set of periodic orbits of arbitrarily large period 

(ii)  An uncountable set of non-periodic motions 

(iii) A dense orbit, the attracting set A having the properties is referred to as a strange 

attractor. 

 

20.5 Chaos: 

In the development of science in the twentieth century, philosophers and scientists convinced 

that there could be a motion even for a simple system which is erratic in nature, not simply 

periodic or quasiperiodic. Moreover, the behaviors of the motion may be unpredictable and 

therefore long-range prediction is impossible. The science of unpredictability has immense 
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interest. The debate on the cause of unpredictability is continuing over centuries. The great 

physicist Albert Einstein wrote a letter to Max Born regarding unpredictability in the cosmos. 

He wrote: "You believe in the God who plays dice, and I in complete law and order." In fact, 

nothing in the universe behaves in a way that is predictable totally forever. The perceptions of 

the infinite, infimum, and their connections with finite are a matter of great concern in 

science and philosophy. Even there is a order in unpredictable motions. But how order and 

chaos coexist. What are the laws underlying in chaotic motion? With the advancement of 

science and computing power it is believed that a simple deterministic system can have very 

complicated dynamics which is inherently present in the system itself. On the other hand, for 

an infinitesimal change in system's initial setup the dynamics as a whole may completely 

change. While studying the unpredictable behaviors of a system, the American 

mathematician James Alan Yorke had introduced the term 'Chaos' for random looking 

dynamics of simple deterministic systems. In Greek mythology, 'Chaos' is defined as an 

infinite formless structure. However, the precise definition of chaos either literarily or 

mathematically is lacking behind till date because of its multi-length scales motions with 

formless structures at infinitum. The appearance of chaotic motion has no definite routes. In 

this book we shall present a basic understanding of what chaos is and its mathematical theory 

under some assumptions. In mathematical framework chaos is a phenomenon exhibiting 

"sensitive dependence on infinitesimally different initial set-ups" and topologically "mixing". 

The chaotic orbits are generally aperiodic and named as "strange" by Rulle and Takens in 

1971 that have fractional dimensions, a new discovery in the twentieth century's nonlinear 

science. There are connections with chaos and fractal objects. Nonlinearity and 

dimensionality (≥ 3) are the key requirements for chaos in continuous systems while in 

discrete systems, even a one-dimensional linear system may exhibit chaotic motion provided 

the system has lack of differentiability. Chaotic phenomena abound in Nature and in 

manmade devices. 

The perception of unpredictable behavior in deterministic systems had been conceived and 

reported in the works of theFrench mathematician Henri Poincare. George David Birkhoff, 

A.M. Lyapunov, M.L. Cartwright, J.E. Littlewood, Andrey Kolmogorov, Stephen Smale, and 

coresearchers were noteworthy workers at the early stage of developments in chaos theory, 

particularly for mathematical foundation of chaos. The chaotic motion in atmospheric flows 

was first described by the American meteorologist, Edward Lorenz in the year 1963 from 

numerical experiments on convective patterns for a very simplified model. He found that the 

solutions never settled down to fixed points or periodic orbits of this simple system. 

Trajectories oscillate in an irregular, nonperiodic pattern with completely different behaviors 

for infinitesimal small change of initial conditions. The solution structure when plotted in 

three-dimensional Eucledian space resembles as a surface of two wings of a butterfly. Lorenz 

pointed out that the solution set contained an infinite number of sheets, known as strange 

attractor with fractional dimension. The sensitive dependence of dynamical evolution for 

infinitesimal change of initial conditions is called the butterfly effect. In 1972, Lorenz talked 

on the butterfly effect in the American Association for the Scientific Progress and questioned: 

"Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?" He claimed that it 

was difficult to predict the long-range climate conditions correctly. The unpredictability is 
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inherently present in the atmospheric flow itself. Therefore, the long-range prediction would 

be uncertain. 

Quantifying chaos is a central issue for understanding chaotic phenomena. Experimental 

evidence and theoretical studies predict some qualitative and quantitative measures for 

quantifying chaos. In this chapter we discuss some measures such as universal sequence (U-

sequence), Lyapunov exponent, renormalization group theory, invariant measure, etc., for 

quantifying chaotic motions. On the other hand, there are some universal numbers applicable 

for particular class of systems, for example, the Feigenbaum number, Golden mean, etc. The 

universality is an important feature in chaotic dynamics. 

Chaotic nonlinear dynamics is a rapidly expanding field and has now been proved to have 

potential applications in many manmade devices, social sciences, chemical and biological 

processes, and computer science. The unexpected fluctuations in sudden occurrence of 

diseases may be explained with the help of chaos theory. Chaos theory is much helpful in 

designing true economic and monetary modeling in resource distribution, financial and 

policy-making decisions. Chaos synchronization theory has been used nowadays for sending 

secret messages and also in other areas. 

 20.5 Mathematical Theory of Chaos: 

Chaos is ubiquitous. Chaotic motions are unpredictable. Philosophers and scientists are trying 

to understand logically how unpredictability occurs. How it can be expressed in mathematical 

setup. The unpredictability in chaos and its mathematical foundation are still not well 

established. The simple looking phenomenon such as the smoke column rising in still air 

from a cigarette, the oscillations and their patterns in the smoke column are so complicated to 

defy understanding. Similarly, the weather forecasting and the world stock market prices are 

the systems that fluctuate with time in a random, irregular ways that the long-term predictions 

do not often match with reality. Chaos is a deterministically unpredictable phenomenon. In 

the evolution of chaotic orbit there are trajectories which do not settle down to fixed points or 

periodic orbits or quasiperiodic orbits as time tends to infinity. Even a deterministic system 

has no random or noisy inputs; an irregular behaviour may appear due to presence of 

nonlinearity, dimensionality, or non-differentiability of the system. Although the time 

evolution obeys strict deterministic laws, the system seems to behave according to its own 

free will. The mathematical definition of chaos introduces two notions, viz., the topological 

transitive property implying the mixing and the metrical property measuring the distance. 

Chaotic orbit may be expressed by fractals. Before defining chaos under the mathematical 

framework we discuss some preliminary concepts and definitions of topological and metric 

spaces which are essential for chaos theory. 

Exercises: 

1. State the characteristics of Lorentz equations.    

    2.      Write down the short note of  i) Chaos  and  ii)Strange attractors . 
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